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PREFACE

Much of the existing information on EMP is in the form of notes cr semi-
formal reports and has not been adequately documented or dfszributed. In
particular, there are several series of notes that act as zechnical journals
for various areas related to EMP and other related subjects. These noce
series are not exclusively for one organization and are run much as techni-
cal journals with an editor, Dr. Carl E. Baum.

The Air Force Weapons Laboratory has undertaken to reissue these exist-
ing notes in convenient volume units. The present volume is Volume 27 of
the Sensor and Simulation Notes, one of the note series in the Electromag-
netic Pulse Note Series. The Sensor and Simulation Notes have the report
designation EMP 1 in the EMP group of note series.

Contributions to this volume, EMP 1-27, have been made by the following
individuals at the included organizations:

Air Force Weapons Laboratory

Carl E. Baum
Korada R. Umashankar

Cooperative Institute for Research in Environmental Sciences

James R. Wait

University of Illinois

V. Krichevsky
R; Mittra

Institute for Telecommunication Sciences

David A. Hill

LuTech, Inc.

D. V. Giri

Mississippi State University

Terry T. Crow
Kuang Yuh Wu
Clayborne D. Taylor

NBC Research and Development Institute of the
Federal Armed Forces Federal Republic of Germany

Hagen Schilling
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TDR. Inc.

Maurice I. Sancer j
Scott Siegel
A.D. Varvatsis

Research for these totes has been funded, in part, by the following agencies:

Defense Nuclear Agency
United States Air Force

Contributions to the Note Series are encouraged from all organizations

actively engaged in related research. Active participation throughout the

community will build a collection of information useful to all. Contribu-

tions and questions regarding the Note Series should be directed to:

Dr. Carl E. Baum
Air Force Weapons Laboratory, NTH

Kirtland Air Force Base, New Mexico 87117.
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A STUDY OF WAVECUIDE MODE EXCITATION
AN1D PROPAGATION IN A ?ARALLEL PLATE TRAI, SMISSION LINE

ABSTRACT

A study of the waveguide mode excitation and propagation is made for a
parallel plate waveguide. Since this configuration is used in the simulation
of the nuclear electromagnetic pulse, results appropriate for 'larious simula-
tors are obtained and discussed. The analysis assumes infinitely wide plates,
but the question of finite wldth plates is addressed.

Acknowledgement

The authors wish to express their appreciation to Dr. K. C. Chen of the
Air Force Weapons Laboratory for suggesting this work and tV- Dr. C. E. Baum
for reading this paper and offering numerous suggestions for its improvement.
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1. Introduction

The parallel plate transmission line provides a useful menns for

measuring the electromagnetic field interaction. In this configuration

nearly uniform electric and magnetic fields are produced, and instru-

mentation can be placed beneath one of the plates. There is, however,

*a practical problem associated with the design and excitation of the

parallel plate transmission line; namely, one must provide a transition

section, typically one or two conical transmission line sections, between

the source and the parallel plate configuration (see Figures 1 and 2).

Insofar as the transmission line mode is concerned the transition

section poses no problems provided the conical line and the parallel

plates have approximately the same cross sectional shape at their inter-

face and provided there is a match between the-characteristic impedances.

However, the spherical wavefront propagating along the conical line does

not match the planar wavefront of the TEI mode in the parallel plate

region, hence the excitation of TE and TH waveguide modes as well as the

TEX mode occurs. Finally, in some situations a single input section is

not sufficient to produce the required field strengths. In these cases

(usually wide plate separations), dual input sections are used. When

using dual input sections one must allow provision in the analysis for

the fact that the sources may not fire simultaneously.

In studying the interaction of complex electrical systems with the

electromagnetic pulse generated by a nuclear detonation, the parallel

plate vaveguide can be used to simulate the interaction. The electro-

magnetic pulse may be simulated by driving the parallel plates from

7
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conical input sections with appropriate surge generators. There are a

number of these simulation facilities currently in use. Example

geometries for single and dual input parallel plate transmission line

simulators are shown in Figures 1 and 2.

An additional complicating feature of these simulators is that they

are constructed as finite width parallel plate transmission lines. The

properties of the TEM mode on such a structure have been studied exten-

sively [1,2]. Other studies [31 have shown that the waveguide modes

for open region waveguides differ considerably from the modes of the

more Zamiliar closed region waveguides. The excitation coefficients for

the modes in an open region structure are obtained by matching boundary

conditions at the interface between the conical input section and the

parallel plate region as well as on the waveguide wills [3]. Apparently,

integral equations must be solved nur!erica-ly to obtain the coefficients

and propagation constants. Due to the complexity of these problems,

the finite-width parallel plate configuration is approximated by using

infinitely wide plates. However expected differences resulting in the

data that are obtained are noted and discussed.

The analysis that is presented is validated by comparisons with

measured data and with data obtained by other investigators.

10
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2. Electromagnetic Fields i an Infinite, Parallel Plate

Waveguide with a Singli Conical Input Section

a. Physical Model

:ne wishes to obtain the electric and magnetic fields in the parallel

plater*egion of the structure shown il Figure 3 in terms of known quantities

in the input section and the physical!dimensions of the parallel plates.

Several simplifying assumptions Ire made. The plates are assumed to

be perfectly conducting, the analysis'is performed in the plane ASB of

Figure 3, the vavefronts are assumed spherical in the conical section and

written as

-Jkr
Ei(x,z) - e e ()

where r2 . x 2 (z + zo)2 (see Figure 4). Also, it is assumed there

are no reflections in the conical section from the parallel plate region,

and the electric field in the aperture AMB, Figure 4, is assumed to be

planar section of a spherical wavefront.

b. Mathematical Model

If one assumes the apex of the conical input pulser generates spheri-

cal waves, a magnetic current source'.M - independent of y- is located at

the plane z = 0 and H is given by (4)

M- E nx (2)a

where Ia is the electric field strength at the aperture or in the plane

a 1 0. From the method of images,

M 2E xn - aMy (3)

a 11
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Figure 3. A Parallel-Plate Wavegulde with a
Single Conical Tnput Section.

12
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Substitution of (1) into (3) yields

-Jkro
H -2V e• j3• (4)

y o r

Since e x cose zo/r it follows that

-Jkro
M -22zo 0 v a (5)

Y r.

where. r 2  x + z2 The constant V is defined by normalizing the
o 0 0

voltage between the plates to unity: i.e.

V rA E(x,z) • - -V (6)
B

Choosing the spherical wavefront through A and 0 aq the path of integration,

i.e.. ro - t, one finds

*e .jkt

Vo 20 (7)
0

and

-Z0 -jk('I - t)
4 - e0 + 0 V/m (8)
Y e( + 2)

For a charge and current free medium, Maxwell's equations are

7~ B 0

(9)

VxH - -J1E4

14
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"where C and V are the free space values of permittivity and permeability,

jWtand the time dependence e is understood but suppressed. Since H is

y independent and the plates are assumed to be infinite in extent in the

y direction, Maxwell's equations must be y independ2_-t. Thus, for Th waves

(7x2 + k2 ) f J2 H (10)

Xz. . y.. n

E "'y - (11)

£2 I al (12)

XZ Jx aaX
whr V •-• -,2 and k - 2w/X~ w /c

c. Frequency Domain

The standard technique for solving (10) is tne Green's function

method; i.e., H is replaced by G(x,zlx',O) and M is replaced by
y y

6(x-x') &(z). Thus, to find C , one must solve

(V2 + k 2 ) G(x,z'x',O) a Jue 6(x-x') S(z) (13)

Additionally, G must satisfy the same boundary conditions as fy or

(1) 0 0 @ x - ±a/2

(l) IGI12d2 <-

C is assumcd to be a Fourier series of even and odd terms

15
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a n a
n-0,2, 4,....

+ si a

with superscripts e and o representing even and odd integers respectively,

and

£ •1 if n=0

* 2 if n0 0

The olution of (13) for the even terms in G is

-jk znaI)CCn Co nffx' n'rx a" nz

G (x,zlx',(. ) - -- .- si -kX (15)
a n0 2 ,a a(15)

where kn * k2 - (nr/a)2 , To obtain R, one evaluates the integral

,a/2

H; (x,z) M rx') Ge(x,zl ),0) dx' (16)

-a/2

It follows that

.'~ z° e jkt -• ecsnxeJknz

R; (x,z) o I6[0.. A t x a (17)

o nuO2M ,. n

where

2 2
•(/2 -jIu/x2 +k

Co atix ' 0 dx' (18)
- a a

16
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A

Similarly, one can solve for the odd terms with the result

0z0 Wce jkk -JknZ

R°(x~z) ; Ia Ao sin ' k" (19)
n-, 3,5,

and

a/2 -jk/x' 2 + z1
Utn J sin~ n~---- dx' (20)

A for single cone excitation is identically zero; thusn

2 aejkn -Jknz

H (xZ) = o I C A cos 2nrx • (21)
eoa n=0,1,2,3,... n n a kn

In (21) it should be observed that the summation is now over all integers,

and

ja/ 2  -jk-x 2 + z '
Cos 2nx eO0 dxt (22)n a x12 + Zo2

o0

and

"k k2 - (2nv/a) 2 (23)n

Use of (11) and (12) in conjunction with (21) leads to

E (X,Z) a o 2nl'x -Jknz (24)O oa nw0 n n a

2rze jkZL -Jknz21TJZoe 2n~Tx •jn

2 (Xz) 0 0o 2-n- 0 n A sin -e (25)
o 0 a nWO n a k

17
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The first termA in (21), (24). and (25) represent the TEM mode and all

remaining terms are TM modes. For finite-width parallel plates TE modes

also are excited ond propagated (3]. Moreover the TE modes are conside-

rably less attenuated than the TM modes. For both sets, the modes are

attenuated above cut-off due to the radiatiou from the open sides of

S... .. -the waveguide. Thus the results that are obtained for the infinitely

vide plates must be interpreted carefully.

d. Time DOmain. Magnetic Field

Raving obtained the frequency domain expressions in section c, one can

proceed in several ways to evaluate the time domain results. From (21)

[and also (25) though tis will not be discussed] one can solve the time

domain problem analytically. From (24), one can evaluate the field at

various frequencies and by means of numerical inverse Fourier transform

(5] determine the behavior in the time domain.

Showing the w-dependence explicitly one can rewrite (21) as

R (x,,w,) - r A 0 Mo (I-z) Ic

-a0c, nw

2z° __ + - cos A (w) w F (z,w) (26)

n-1 -ae0n n

with
I 'x' Z + z 2

/2 2nfrx' e C 0
A (w) - cos a x2+Z2 dx (27)

0

jWI/c -jz W- (2n-)

F (z,W) - C e J (28)
n 2nr 2

18
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and

The expression in (26) is the frequency response at a particular w or the

response to a 4(t) input. The Fourier transform of the step function,u(t)

u(t) = 0 t < 0

= 1 t>O

is
f(u(t)] )•()+ (29)

from which it follows that the response to the step function e,:c:tation is

h (x.2~t) * S J[r6w + ~H Ix, z,wi)e JWt dw
Go (30)

Shs0 + .1 han
Y n-l" Y

where o and n refer to the zeroth or nth term. Rewriting the hso and

collecting terms in a convenient manner, one obtains

h s o a J0 2 2 FE(w) +1
sio e. a 0 + 1 Z2 + ejuf(t't'z'x') d dx'

0 0 ,

and

f(t,.,:,x') - t + (.t - )/c -[x"1 + Z2 Jc

Thus, (31) becomes

h~o z I 1 -z(2
h -O toar t + x

0

19
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and, since I > 4,2 + z2  then if t > z/c
_0

h > zc (33)
y an -

In general one must evaluate (32) subject to the condition that

Ct > x' 2 + z2 + z-
S~0

Since x' varies, this means the integral must be done in one of .hree

ways depending on the time, t

1. If ct < z + z -I, the integral in (32) is identically

zero.

2. If z+z 1.< ct + 2- 1. the upper limit on2. 0 o < 12 + z°

this integral is

xU = ict + I- Z)-.z
xu o

3. If ct > F2) + z°2 + z - . , the upper limit on the integral

is a/2.

These statements are basically causality conditions.

as -ing -the identity- 8(w) (b(w)-- 8(w) -$(O) ,one-finds __

a/c- 2nitx'
hs -i O dx*" €

Y Xt2 z 2  21tj

0 0 (34).[ -, - jot +, -x +
a .. .. 2 C0 d ( ! )

20
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The secord integral in (34) can be transformed analyticnlly 161 using

the identity

1 _____e d~
1foct -2J yt- x,) t >x (35)

21rj .2.y2 0
-

where J is the Bessel function of the first kind. The final result of

these manipulations is

h 2Z0  .L'Lx u 2nrx'_

hc(x,z,t) f + cos Cs c s - g2e0al n a a X 4o0

Jo L (:t + I - rx'2 + 2 2) - 2 dx' (36)

Again, the integral in (36) must be evaluated subject to the same con-

ditions discussed for (32), and f, depends on the evaluation of (32)

(e.g., if et > [ !a+ z2.+ z - f , then f, a 1.). The expression

(36), for h; , must be evaluated numerically. First, define a new function

Y(N) which is identical to h5 except the summation runs from one to N
Y

"rather than from one to infinity. The function y(N) versus N is shown

in Figure 5. The function calculated in the program is defined

40
I - T(N)

h;(x,z,t) N207)
y = 21

One other comment is appropriate. The integrals in (37) are eval-.ated

using a 15 point Gauss-Legendre quadrature formula. As n increases, the

function to be evaluated oscillatts more rapidly. Therefore a :hange

of variable In performed such that es n increases, the number of Gauss-

Legendre zones from x' - 0 *o x' - a/2 increases proportional to n.

The y component of the mgnetic field, h (x,z,t), due to a step
y

function excitation is plotted with respect to time (t) and shown in

21

I
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Figures f for several field points in an ALECS*-tvpe facilitv, while

Figure 7 is appropriate for the ARES** geometrv. Note that time is

measured from t - 1, the time at which all the dipoles in the plane

- 0 have turned on. Corresponding frequency domain (Fourier Trans-

forms of h y) are shown in Figures 8 and 9. Note that singularities occur

at the cavity resonaries of the parallel plates.

e. Time Domain, Electric Field

The electric field calculations in the time domain have been per-

formed using the inverse Fourier transform rather than an analytic solu-

tion. E x(x,z,w) , (24), haa been evaluated for 100 different frequencies

varying from the d-c term to 100 MHz. The frequencies chosen'were as

follows:

f Af

0 -,

.5 -1 Mz .1 MHz

1 - 10 M~z .2 MHz

10 - 100 MHz 2 MHz

e (X,Z.t) has been evaluated using standard Fourier transform techniques:
x

in this procedure it is assumed that E x(x,z,w) is a linear function of

frequency between the individual calculated field values IS1. Since

E (x,z,w) as given by (24) is the impulse response then it must be multi-

plied by the Fourier transform of the actual pulse driving the plates--

in the previous section this pulse was assumed to be a unit step.

*Air Force Weapons Laboratory/Los Alamos Scientific Laboratories

Electromakietic Pulse Calibration and Simulation Facility.
**Advanced Research Electromagnetic Pulse Simulation Facility.

(
23
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Figure 8: The Fourier transform of the horizontal magnetic
field produced by a unit step excitation of the
ALMC simulator.
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Figure 9: The Fourier transform of the horizontal magnetic
field produced by a unit step excitation of the
ARES simulator.
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However, for convenience in applying the inverse Fourier transform here

Sthe unit step with exponential damping is consiaered, i.e., u(t)eat

where a 4.8 x 10' a".

The complex magnitude of the Fourier transform of the vertical

electric field is shown in Figures 10 through 15. In contrast with the

results of Figures 8 and 9 the Fourier transform of the vertical electric

field does not exhibit singularities at the cavity resonances. Results

appropriate for the ALECS and ARES simulatori are given. Note that it

is only when the frequency is above the lowest cut-off frequency that

there is any a-dependence of the fields.

Time domain results for the vertical electric field are shown in

Figures 16 through 21. These indicate that the TEH mode contribution

is dominant.

f. CoMparison of Experimental Data and Theoretical Results

for the ALECS Facility

* In 1974 Giles et.al. [71 evaluated the performance of the ALECS

-facility in the CW mode. In particular, B and D measurements were made

versus frequency at the center of the working volume. Figures 22 and 23

shown the results bf these measurements. On the same figures one can

see the results of the theoretical analysis for CV performance. In

order to compare results, B0 and D were chosen such that the

experimental and theoretical results matched at 5 MHz.

Before interpreting the foregoing results, the question of finite

wi.dth versus infinite width plates should be considered. Marin 181

found that for finite width plates the TE modes were most important,

i.e., they exhibited less attenuation above cutoff, and the analysis
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Figure 10: The Fourier transform of the vertical electric
field produced by a unit step (with exponential
decay) excitation of the ALECS simulator.
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Figure 11: The Fourier transform of the vertical electriC.
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L "decay) excitation of the ALECS simulator.
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Figur e 13: The Fourier transform of the vertical electric
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decay) excitation of the ARES simulator.
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Figure 14: The Fourier transform of the vertical electric
field produxced by . unit step (with exponential

decay) excitation of the ARES simulator.
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Figure 15: The Fourier transform of the vertical electric
field produced by a untt step (with exponential
decay) excitation of the ARES siqmulator.
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Vigure 22: Evaluation of the CW1 performance of the ALECS
facility - electric fteld determination in
the vorking volume at x - 0. z - 7.5.
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Figure 23: Evaluation of the CW performance of the ALECS
facility-magnetic field determination in the
working volume at x 0, z 7.5.
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used here did not include TE modes. R;,t since the TE1 tode cnntrhi,,res

very significantly to the simulator field there is good agreement hetween

the measured and calculated data as Is shoun in Figures 22 and 23. The

disparity increases significantly at higher frequvncies partly'because

reflections from the termination (not included in t.he analysis) become

more significant and partly because the waveguide todes supported by the

actual finite vidth vaveguide have radiation losses. The very sharp var-

iation in the calculated magnetic field may be attributed to the onset of

mode propagation, e.g. the cutoff frequency for the Th mode is about 12 !lIz.
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3. Electromagnetic Fields in an Infinite, Parallel

__.... .. Plate Waveguide with a Double Conical Input Section

a. Physical Model

In some instances one wishes to obtain field values in the parallel

plate region of a simulator that are higher than those a~tainable from a

single pulser. In these situations, one solution is to use two separate t,

pulsers and two input sections, Figure 24. One problem that arises is

the nonsimultaneous firing of the sources, and the analysis must take this

into account if it is to provide meaningful data.

b. Mathematical Model

As in section 2, each source is assumed to generate a spherical

wave, E

V -0kr ^j = e i r (38)

r rr

where r. (x a/4)2 (Z + Zo0) for the upper (-) and lower (+) cones.

Again, normalizing each 3ource to 1 volt, one obtains a magnetic aource

for the upper cone as

Jk -(r(x a/4)2 + Z2 )

M e [(X - a/4) 2 + z2 (

0 0

For the lower cone, the magnetic source becomes

-jk Vx+ a/4) +' -tS. 0 ________0)______

IN 80  (X + a/4)2 + z2 (40)
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pulsers

double conical
transmission
line

input transition I two-parallel-plate
and/or wave I transmission line
launcher

rigure 2h: A Design for a Parallel-Plate Transmission Line
Simulators. (View parallel to plates and perpendicular
to direction of propagation, or z.direction.).
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Substitution of (39) into (16) (the upper source analysis is performed

Independently of the lower source) leads to

z LW e ue nxei -Jknz
uje(xz,w) . aei 2 A On a k z>0 (41)

o n-0, 2 ,4,... n

where

coo- -jk (x' -a/4) 2 + z 2

uAe .a e dx' (42)
n Wx - a1/)2 + z2

0

and

z w~ek" e-jknz
.. O(x.,z,•) 0 o." A° si.n• > 0 (43)0 na1,3,5,... 0 n a kn

where

a/2 sin nlTx' -jk .(x' - i/4)2 + z2

u e a e 0 dx' (44)
A; W(x' -a/4)2 + Z2

o 0

e
For the lower cone one obtains expressions for H and Ho thatY Y

are identical to (41) and (43) except uAe and UAO must be replacedn n

"by A and -A where

o COO nx-- -jk /(x+ /4)2 +z 2Aos a 0 o dx' (45)
n , (x' +a/4) 2 + z2

0

and

C os -cok a + a(x +a4)2 + z 2
Ae - ( a z 0 dx' (46)

-a1
-:n (x' + a/4) 2 + 0o

-/2
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For nonsimult,'neous firing of the sources, (41) and (43) should be modi-

( fied so that they differ in phase by wT where T is the time duration

between the firings.

c. lime U in, Magnetic Field

The step response for the even terms in the upper cone excitation

is obtained as follows. Expression (41) is multiplied by the frequency

spectrum of the step function

S+1
jW

and the Fourier transform is

uhs lr d ) 11 2C C W
YW JJ n-0,2,4,... + - co2 -a

&/2 coo nlx__" -J -a/4)" + z
a c 0

(x' -a/4) 
2  +_z'_ _ _ _

0 0

S7 • • e" ) .jut dw (47)
C2 n 2

As in the single cone case in section 2, the w integral can be performed

analytically leading to

r/ 2  Cornx.
%;e(x,-,t) + co r- a

an aeo - (x'Z- &/4)1 +z2a n=2,4,..,.
o a

Jo R-ct + I -/x '-./4T7 + z÷ 2 :3" dx'

(48)

(
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with the restriction that ct + t - /(x'-&/4)2 + z 2 z . In a
0

similar fashion odd terms for the upper source, % , and even and odd

te saoterms for the lower source, h; and h s respectively, can be derived.y y

Finally, if one allows the upper source to fire aft.er the lower source by

a time Interval T , one obtains

h (xz,t) u sh'e(x,z,t) + UhS°(xz.t)
se Y

+ - xZT)+ t ,X9'rT (49)

Vhere T1 = t + T . In detail. (49) becomes

2f (U Cos nr-

h8 (x.,:t) •-•I + nz° cog _x I a
a a -n2,4,6,... a (x'-a/4)2 + z:2

o0

ct + I (x'-a/4)2 + Z2 -z2

JO1 n 4(cT+, -I /(x'-a/4)2 + z) - z.2 dx'

aa/0

2 a/2 sin -

0 n am!! a+ ae sin a0 n-1,3,5 (x' - a/l4) 2 + Z2

0 0

[J ahJ(ct + I - V'(x' -a/4) 2 + F)' Z2

- •o °4r+ -J/('-'/42 +W -za - :2 2 dx'

(50)
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The comments regarding the solution of (36) in section 2 are also

applicable to the solucion of (50).

d. Time Domain, Electric Field

A, SRaving derived u•iS(x,zw) and 6H (x,z,W) one can obtain the
y y

Fourier transtorm of the vertical electric field Ex(x,z,w) from (24).

Then, in exactly the same procedure as that described in section 2e,

time domain electric fields may be obtained using the inverse Fourier

transform. Also as before the electric field calculation is made for an

exponentially-decaying, unit-step excitation.

e. Numerical Results for the ATLAS I* Simulator

While the ARES simulator can not propagate TE modes, the Atlas I and

the ALECS simulators can since the waveguide plates are a wire mesh and

hence can support currents transverse to the direction of propagation.

Therefore, the results to be presented subsequently are valid only in a

qualitative sense since the analysis did not include TE modes. However,

* the excitation of the TEM mode and the asynchronous firing of the pulses

should be treated quite accurately by the analysis. Accordingly a

copious amount of data is presented. Since theJATLAS I simulator is still

under construction there is no measured data to validate the analysis.

For a detailed discussion of the predicted behavior of the ATLAS I

simulator the authors defer to references (9] through 1121.

First the Fourier transform of the vertical electric field is shown

for various positions within the ATLAS I simulator with an assumed

typical asynchronus firing of the pulsers. Magnitude plots are given in

Figures 25 through 28 for various points within the working violume.

*The horizontally polarized, bounded wave simulator commonly referred

to as TRESTLE.
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Figure 25: The Fourier transform oC the vertical electric field

produced by a unit step (with exponential decay)
excitation of the ATLAS I simulator.
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Figure 26: The Fourier transform of the vertical electric
S....... ... field produced by a unit step (with exponential

decay) excitgtion oF. the ATLAS I simulator.
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Figure 27: The Fourier transtorm of the vertical electric
field produced by a unit step (with exponential
decay) excitation of the ATLAS I simulator.
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Figure 28: The Fourier transform of the vertical electric
filad produced by a unit step (wth exonential

decay) excitation of the ATTS I simulator.
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For a unit step excitation (even with exponential decay), the waveguide

modes are much more significant for the ATLAS I simulator than for the

ALECS or ARES due to its dual input sections and due to its lowest cut-

off frequency for the waveguide modes being only 5.7 MHz. It is readily

noted that the higher order modes become increasingly significant with

distance from the input transition section. If only a pure TEM mode were

excited in the simulator then the magnitude plots of the Fourier trans-

form would be straight lines.

A significant contribution to the excitation of the higher order

modes is the asynchronous firing of the pulsers driving the input sections

of the ATLAS I simulator. This can -be seen from figure 29. However, the

deep nulls in the curves at 50 MHz and 100 MHz are due to distructive

interference pccurring as a result of the phase difference between the

two sources of, the two input sections

As mentioned in the foregoing the ATLAS I simulator can support TE

modes whereas the analysis includes only TM modes. For finite width

plates both the TE and TM modes are evanescent, but for infinite plates

the modes do not radiate. Hence the effect of the TM modes is over

emphasized by the analysis (as shown in Figures 22 and 23) and the effect

of the TE modes under emphasized. One would expect then that the rela-

tive importance of the higher order modes as exhibited in Figures 25

through 28 should be representative. But the asynchronous effect as

shown in Figure 29 should be quite accurate.

In Figures 30 through 33 the time domain vertical electric field

is presented for an exponentially decaying unit step excitation of the

dual input sections to ihe ATLAS I simulator. Note that at the center
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Figure 29: The Fourier transform of the vertical electric
field produced by a unit step (vith exponential
decay) excitation of the ATLAS I simulator.
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.Igure 30: The vertical electric field produced by a unit step
(with exponential decay) excitation of the ATLAS I
simulator.

56



EHP 1-27 245-53

24.0 -. x-0, z-25.T-Sns
24.0 a.-26, z-2S,5 T-ns

zw13, z-25, T-Sns

20.0

16.0

0" 12.0N

( * 8.0

4.0

0.0

20 40 60 80 100 120 140 160 ns

t (z - I + a0o)C

Figure 31: The vertical electric field produced by a unit sLop
(with exponential decay) excitation of the ATLAS I
simulator.
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.igure 32: The vertical electric field produced by a unit step
(with exponential decay) excitation of the ATLAS I
simulator.
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figure 33: The vertical electric field produced by a unit step
(with exponential decay) excitation of the ATLAS I
eimulator.
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of the working volume (x- 0, z- 50) the peak electric field is about

26 millivolts/meter. Baum, et al. (121 predict that the value should be

about 20 millivolts/meter. In arriving at their result Baum, et al. use

ray theory primarily and account for the fin te width of the plates. It

is further noted that the overall time domain response follows the pre-

diction presented by Baum, et al., considering that their assumed exci-

tation is a unit step. Also the general behavior at x = 13 , z - 50

follows the roughly sketched waveform that Baum, et al. predict for their

point c. They predict an initial peak of about 11 millivolts/meter

whereas the present analysis yields about 17 millivolts/meter, which is

quite satisfactory agreement in view of the completely different

analyses that are used.

In their predictions of the electric field produced by the ATLAS I

simulator Baum, et al. (12] do not consider asynchronous firing of the

input pulsers. The effect in the electric field at the center of the

working volume due to the nonsimultaneity of the excitations of the dual

input sections is exhibited in Figure 34. First there is an increase in

the rise time and second if the asynchronous time is sufficiently large,

e.g. T - 10 nas a precursor peak occurs. These precursor peaks are

even more pronounced in the horizontal magnatic field computations as

shown in Figure 35 for the same location in the simulator. The magnitude

of the Fourier transform of the horizontal magnetic field is shown in

-Figure 36 for a typical location in the ATLAS I simulator.
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Figure 34: The vertical field produced by a unit step (with
exponential decay) excitation of the ATLAS I
simulator.
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Figure 35: The horizontal magnetic field produced by a unit
step excitation of the ATLAS I simulator.
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figure 36: The Fourier transfore of the horizontal magnetic

field produced by a unit xtep exc*tation of the
ATLAS I simulator.
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ENP SIMULATION AND ITS IMPACT ON EMP TESTING

ABSTRACT

In testing systems for their response to EMP it is necessary to consider
the EMP criteria set. Then, having chosen some EMP simulation set, one mitst
consider how closely each simulation approximates the respective criterion,
correcting for this difference by extrapolation as necessary. This paper
discusses these concepts in the context of currently used techniques.
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(,.. 1. INTRODUCTION

The interaction of the nuclear electromagnetic pulse (ERP) vith -a

military or civilian electronic system is in general a very complicated

process. It.is this process which results in the system vulnerability or

lack thereof to some DIP criterion or set of such criteria. If one had a

perfect quantitative understanding of the DIP interaction process in all

case% of interest, then one could presumably predict the system vulnerability

or lack of same, i.e., 'one could perform an assessment by analysis. However.

this utopia does not exist in practice.

The problem with the quantitative description of the DIP interaction

process is its great complexity. There are typically such a large number of

actual and/or potential items of significance to the DIP interaction process

in a given system that it becomes Impractical to aiequately account for them

all. This complexity manifests itself in st least two ways:

1. The number of individual items and combinations of items (wires,

other conductor paths, impedances, propagation constants, cavities, apertures,

conductive penetrations, antennas, interface circuits, filters, etc.) becomes

large enough that even a small uncertainty in the enalysis of the response of

some individual process results in a large uncertainty in the analytically

determined DIP response and hardness (or lack of vulnerability) of the sys-

tem as a whole.

2. Even if the analysis in 1 vere perfect (an unlikely circumstance)

for a gfien specified system (say as specified by a "complete" set of blue-

prints), there is another practical difficulty. Experience has shown that

the assumption that one is even aware of the existence of all relevant DW
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penetration paths is often errorneous. There are often items in the real

system (for vhich the analysis is supposed to apply) vhich are not indi-

cated on the dravings, and which represent important W(P interaction paths.

This can be summarized as: the system is

1. too complicated, and

2. not sufficiently vell defined.

The above observations of analysis uncertainty summarize the current

state of affairs; this will not necessarily accurately reflect the future

state of the art. It is clearly desirable to design nay systems in a manner

which significantly reduces the above problems. This is obtained in general

by greater EM? hardening of the system. If the hardness margins for the

individual signals reaching sensitive positions (failure ports) can be

significantly increased across the board, then one expects that the prob-

able number of cases with negative hardness -argitm will be significantly

decreased, ideally decreasing to zero in the limit of sufficient individual-

failure-port designed hardness. Whether or not (or how often) a practical

system can be designed with sufficiently large hardness margins for Indi-

vidual signals such that the overall system hardness margin (smallest

individual signal hardness margin) is positive (implying a hard system) is

at present uncertain. Some promising concepts for improving the system

hardening come under the general heading of electromagnetic topology, in

which control is emphasized for all signals passing through defined prin-

cipal surfaces which are closed surfaces (shields) bounding various

volumes in the system [18; this potentially applies a more structured

approach to EMP hardening with various levels of control possible.
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In any event, for high confidence that a system is E(P hard, onQ will

have to resort to a full 'DE system-level test as a demonstration, at a

minimum. Complex systems are normally tested for their performnce charac-

teristics. Who commits, for example, a military or civilian aircraft to

extensive production without a flight test program? As a reasonable

engineering practice vhy then would one not perform a similar D4P test

program on complex electronic systems which are supposed to function after

exposure to WIP environments? As the technology evolves and better hard-

ness control is presumably achieved, the extent of the "optimnm" noP test

(duration and complexity) will likely also evolve with different parts

receiving different emphases to best match the state of the art of MIP

hardness understanding.
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11. CRITEIRIA

Before one has an DIP test, he must know in some sense what DIP is.

This paper does not go into a detailed discussion of EIP environments,

such being available elsewhere [7). However, the reader will need at least

a simplified version of the EIP envircnmtnt(s) of concern to be in a posi-

tion to conduct a meaningful EIP test. A statement of an DIP environment

in an appropriate form is referred to as an EIP criterion. Recalling a

previous definition [3),

"A(n) (EDP) criterion is:'

a quantitative statement of the physical parameters of the (DEM)

environment relevant to the (DIP) response of a system of interest in a

volume of space and region of time and/or frequency extended to contain

all physical parameters having a non-negligible influence on any of the

(WIP) response parameters (e.g., ap in the case of EDP (plane wave) a par-

ticular direction of incidence and a particular polarlzation and proximity

to other scatterers)."

For simplicity and engineering utility this criterion is often

expressed in some canonical form involving mathematical expressions (spe-

cial functions, etc.). This canonical form is best chosen to contain the

relevant features of the environment, but in an idealized, somewhat sim-

plified, form. It is important that the simplifications do not remove

features of the environment which can contribute to the system vulnera-

bility. For this reason the criteria waveforms are taken to bound the

envlronmeatal waveforms in relevant aspects such as rate of rise, peak

amplitude, time integral (area under the curve), etc. However, to be

useful such bounds should be reasonably tight. Such bounds should also
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be considered in terms of the magnitude of the Fourier transform, i.e., in

frequency domain since system responses are typically frequency selective,

or more generally complex-frequency selective in terms of poles of the Lap-

lace transform (9].

While there are many kinds of EMP environments some are of more inter-

es*t than others for present purposes. The nuclear-source-region IKP

environments are rather complex in that they involve current density and

conductivity as well as electric and magnetic fields in a non-linear and

self-consistent combination (61. On the other hand, if one goes away from

the source region the DIP environment can often be approximated by a plane

wave. This is especially the case for what is referred to as the high alti-

tude EDP. In this case with the weapon detonation exoatmospheric, the y

rays interact with the atmosphere to produce coupton electrons which spiral

in the geomagnetic field in rr ghly the 20 km to 40 km altitude regime.

The re-ulting fields below this source region (before reflecting from the

earth's surface) •re approximated as a plane wave with a rise time in theSIL!
10 us regime, a p k for the electric field of the order of 1Os V/m, and

a pulse width in •e 100 us ball park.

For this i rtant example of a high-altitude DWP environment canonical

forms of the environment have been proposed and employed. Taking a general

plane wave in free space as

S.,) -2f2 c )12 + 33 c )13
(1)

zo( -'t) E f (t- )12 + E2 f 2 (tL---)t 3
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Zo (ave 0.mpedance of free space)

0

(light speed in free space)

with orthogonal unit vectors

.11 = direction of propagation

12,T3 orthogonal polarizations (2)

1, '2 13' t2xt3 tl' t3t 1 2

Since the electric and magnetic fields are very simply related in (I), then

in effect only one need be specified. The constants E2 and E3 are para-

meters with dimensions V/m, related to time-demain peaks. The waveforms

are f 2 (t) and f 3 (t) shifted into retarded time. For present purposes only

one such vaveform f(t) is considered, but in principle pol.arization can

rotate.

The normalized waveform f(t) is then taken in some convenient analytic

form so that its properties in time domain f(t), and complex frequency

domain ?(s), apprcpriately approximate, or better bound (closely). a set of

environmental waveforms. Here the two-sided Laplace transform is defined

by

S -" ft)e'tdt

f(t) - I j(s)e tds (3)

a O l4jw
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With no in the strip of convergence. Examples of waveform functions which

have been used 151 include

f, 1 )(t)-[ 'e-atM-bt} u(t) . .>b>O

* 1 (t)(s) - a-b

f (2)(t W atat+eb ,0a>, b>O (4)

(a+ a)(b)

•(2){s • csc(W ~b

In both of these cases a is chosen to give the desired rise characteristics

in time domain and high-frequency characteristics of I(jc). Typically

a>>b (5)

in both examples, corresponding to rise time small compared to decay time.

Detailed properties of these canonicdl vaveform functions are discussed

in [51.

The plane-wave criterion form in (l) is appropriate for the case of

a system in flight below the high-altitude nuclear source region, but at

an altitude appreciably above the earth surface, so that the pulse

reflected from the earth surface arrives sufficiently later in time that

it may be considered a separate event. For a system operating on or near

the earth surface such a high-altitude criterion must include the earth

reflection, at least implicitly. Furthermore, the proximity of the earth

to the system must also be included in the criterion because of the earth

effect on the system Green's function (including natural frequencies, etc.).

(. 73

7.... "*7 -



246-10 EM? 1-27

Having an E(P criterion, such as in (1) we cannot stop there. Such

canonical environments still have several parameters to be specified. In

:1) the direction of incidence T1 must be specified; actual D(P environ-

sent* can have a range of realistic values for !I, so one must specify

some range or set of Similar coments apply to the polarization 12

and 13.

Let us define a statement of a criterion as in (1) and (4). together

with a range of the associated parameters (such as the unit vectors TVI
etc.) as being a criteria set. It is this criteria set which the system

is supposed to survive in some defined sense.
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III. SIMULATION

Having some defined EG? criteria set ye next must have some kind of

DP simulation set which tests the system of interest in some way which

approximates or is quantitatively and experimentally related to the cri-

teria set. As previously defined ill (EMP) simulation (an individual

simulation normally related to a single criterion) is:

"an experiment in which the postulated (EMP) exposure sit.Ation is

replaced by a physical situation in which:

1. the (OIP) sources are replaced by a set of eq~uivalent sources

which to a good approximation produce the same excitation (including

reconstruction by superposition to the extent feasible) to the total eys-

tem under test or some portion thereof as vould exist in the postulated

nuclear environment, and

2. the system under test is configured so that it reacts to sources

(has the same Green's function) in very nearly the same way and to the

same degree as it would in the postulated nuclear enviroment."

"A(n) (DIP) simulator is a device which provides the excitation used for

(12P) simulation without significantly altering the response of the system

under test by the simulator presence."

For a given individual criterion and system of interest (including its

operational situation to be simulated) one may select an appropriate (WIP)

simulator and design the simulation (test); this defines a criterion-

simulation pair, abbreviated as a CS pair. A "complete" VIP test program

may involve different configurations (including oxicntations) of the system

in a given simulator, and perhaps even several different simulators;
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this set is referred to as a simulation set. Now in determining the

system response in a simulation teat the failure-port response is a most

relevant parameter. A failure port (3]."might be some pin on a connector

Into some black box. This position is of interest because one uses it

for referencing signals associated with permanent damage or temporary

functional disruption (upset).' This gives two ways to consider-a CS

pair. First there is a failure-port CS pair concerned with the criterion

vs. simulation response at a particular failure port; the best simulation

in this sense minimizes the difference between these two at the selected

failure port. More interesting is the CS-pair system set which encom-

passes the failure-port CS pairs throughout the system for a given CS pair.

Now the CS-pair system set defines an individual criterion .sjessment

which is a statement of the system vulnerability or lack thereof to the

Individual criterion of interest. However, since an EIP criterion set

encompasses's range of excitation parameters, and for each selected

Individual criterion there is in general a separate simulation, then it is

the collection of CS-pair system sets, varied over the same set of para-

meters that determines the criteria set, which determines the assessment

of the system to the criteria set of interest; this defines the criteria-

set assessment, or system assessment for short. Later there is discussed

the use of extrapolated (E) response as an approximation tu criterion (C)

response. For that case. the substitution of extrapolated for criterion.

and extrapolated system response set for criteria system response set is

appropriate.SFor high-altitude W simulation various typos of DIP simulators are

appropriate, the common ones including guided-wave simulators (such as
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( parallel-plate transmission lines) for simulating in-flight conditions (with

the system not actually in-flight), equivalent-electric-dipole simulators

(vertically polarized) for testing systems in actual flight, and hybrid

simulators for testing systems which are supposed to be on the ground

(buildings, parked aircraft, etc.). For other types of DIP. there are other

types of simulators. For an extensive discussion of the various types of

WIP simulators see (1).
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IV. MT.POTATION

Simulation is not in general perfect; this should not be a surprise

to anyone, considering that simulation is an experiment which is not the

"real thing". One would like to have a near perfect simulator, but this is

[ lnot alvays possible or practical; it is also generally expensive. Given

some particular simulation test, is it possible to quantify the errors and/

or correct the results in order to have a more accurate estimate of the

system response under criterion conditions? This is the subject of extrap-

olation as defined and discussedt in 131, with th• ?finition:

"Simulator extrapolation is:

an extension of the simulator in which the system undergoing a sim-

ulation test is corrected to some degree for differences of its response

from those under criterion conditions associated with

1. differences in the simulator environment from the criterion enviror.-

sent, and
C

2. proximity of the simulator to the system changing its response

characteristics (Oween's function) from those existing under criterion

conditions. (Note that local earth, water, etc., in the context of an E'P

simulator is part of the simulator.)"

This can be generalized to simulation extrapolation if one includes

"3. differences in the system configuration changing its response

characteristics from those existing under criterion (operational) conditions."

For present purposes only the first two points are considered.

Fire 1 diagrams the various types of extrapolation discussed in 131

which are summarized here. This extrapolation sequence diagram is a topo-

73
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logical diagram similar to the interaction sequence diagram 181 in t,&. it

is based on signal flow from the incident v'we to the system exterior,

through the system .xterior, and on to some failure port (such as the input

to one of-the '%lack boxes") in the system. Note the inclusion of the simu-

lator/object interaction as a step which can influence the signal flow

between the incident field and system in criterion conditions as well as in

the simulator. This assumption is often valid but not always; it does, how-

ever, significantly Amplify the extrapolation problem.

For the extrapolation there is introduced the concept of an extrapola-

tion function, designated in complex frequency domain by le(s). This func-

tion is defined such that It multiplies a reeponse function somewhere to give

a corresponding extrapolated response which in some sense approximates the

response under criterion conditions. For this purpose we introduce super-

scripts

C criterion

S : simulation (6)
E - extrapolated

so that re can write

( p e h a pt o o e ): : : --- e ( s ) P ( (s ( 1 )

where refers to some response function of interest vith P(E) approximatingLli (perhaps in a very crude way) P(C).f • Type I extrapolation is (for completeness) identi extrapolation wit

"!*(.el) - 1 (8)

i.e., nothing is done to results from the simulation test. Of course this
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-- is accurate only in the Iimit of the simulation perfectly matching the par-

ticular criterion in all relevant aspects.

Type 2 extrapolation corrects for waveform differences, but not differ-

ent spatial variations of the incident fields or simulator/object interaction,

by defining

p(S) (a)
Inc

with the incident-field function defined in a variety of ways, such as

line () t±inc(;095) to (10)

where o I• oas soe selected posicion In space and to a particular direction

(Polarization) there. This type 2 extrapolation is then an incident-field

freauency-spe-trua extrapolation. It is particularly appropriate for cases

that the simulator spatial distribution of the fields closely matches that

of the criteric, (e.g., (1)) with a different waveform and field amplitude.

An example of such a case is an aircraft flying by an E0? simulator at

sufficient range to well simulate In-flight conditions (for perhaps limited

choices of direction of incidence and polarization).

Type 3 extrapolation is referred to as exterior extrapolation. As the

name implies the electromagnetic response of the system exterior (surface

current and charge densities) enters into the extrapolation formulas in the

definition of the extrapolation function and/or the estimation of the

remaining errors. ?or this purpose the system is assumed to have an

approximately perfectly conducting outer envelope. Of course there are
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electrical penetrations through this envelope. For present purposes these

penetrations are assumed to be sufficiently small (both electr'cally and

physically) and of not too large a number. Then the transfer function from

the incident field (criterion and simulation) to a failure port can be

factored into a sam of products with each product having as a factor

sm(s.s) where

)o Z0 L(rse 't, for a w 1.2
t oo (i s le) a I ( '1 ;(,rsg) for a - 3

re E coordinate on surface (envelope) (11)

corresponding to the two components of surface current density and one of the

surface charge density. The Tum are a right-handed set of unit vectors

corresponding to an orthogonal um coordinate system with u3 - (some constant)

corresponding to our system envelope. Furthermore, for developing the

error formulas it will be assumed that for a given failure port only one

value of a and one of ra is dominant, i.e., only one penetration and pene-

tration mode is important for any frequency (or at least most frequencies)

of interest, although different frequencies may have different dominant

penetrations and/or penetration modes.

As a first step define an extrapolation function. One way (type 3A)

is defined as in (9) based on the incident field giving

1(A p()) Iinc (

Noting from (10) that there is some choice of measurement position ro and

orientation to for this type of incident-field extrapolation function, one
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"might even average .the above .ratio over var us choices of ro aud to.

Another vay (type 3B) is defined from the surface response quantities as

in (11) as

"a ,jm ( 0,( )
(a~) P(S) -=(13)

for some aar cular rs rso and choice of m. letter. an average over the

surface and a is made. Various averages are possible; the one in most

common use it a logarithmic average or geomeirical mean as

- p Ln (I

-T:s O -1 t sn(

(14)
SH p~1.. 1/N'

P(C) )
Ii . -i• sI, (*s)

"where 1, 1•'.2:...,N; is an index corresponding to pairs of selected posi-.

tions Usn on the envelope) and orientations (tM). perhaps randomly

chosen. This latter choice has the property of minimizing the errors

(in a ratio sense) which follow.

Now take the surface response quantities to define a set of ratios as

=_ •t (s)( • ~~s) '"S)(s)

- j#3( 5) PIC)r ~ 4s (5-. •L

where either (A) or (B) can be tcplied as a superscript on the extrapolatior

"function. If one graphs !%•(Jw)I as a function of w (or f - wf(2w)) for

t - 1.2....N;. deviat.on of the magnitudes 'of the ratios from unity can be
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taken as a measure of the (linear) errors remaining after correction of the

system response at the failure ports by the extrapolation function. These

errors can also be considered in time domain by using individual ratios as

in (13) to construct Nj different extrapolation functions with multiplica-

tion as In (7) and inverse Laplace transformation; the spread of the result-

ing time-domain failure-port waveforms from that using (12) or (14) gives

the tine-domain errors. Note that as the spatial part of the fields in the

simulator ts made to match the criterion, and the simulator/object inter-

action tends to criterion conditions, then all the ratios in (15) become

the same. Furthermore if the surface extrapolation function in (11) or (14)

is used, then the above ratios all become 1.0. This general Kini ' rror

is referred to as type 3C in this extrapolation development.

tn order to obtain the surface response quantities above one needs the

surface response set under criterion conditions. This can be obtained in

various ways. The real system can be used to experimentally determine the

criterion surface responses,. provided for this purpose a sufficiently pure

simulation which requires no-sore severe than typi 2 extrapolation is used.

Typically measurements on scale models (of the system exterior envelope.

Including large antennas) have been used to obtain the criterion surface

responses [2, 41.

Finally, type 4 extrapolation attempts to avoid the 3C errors. It does

this by experimentally associating the signal at a failure port with the

surface response quantities (11) appropriate to the penetrations driving

that particular failure port. While this avoids the uncertainty as in (14),

it introduces the significant complexity of determining which penetrations

and penetration modes are associated with each failure port. tn effect,

extrapolation functions must be determined for each failure port.
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V. CONCLUSION

This paper has outlined the basics in the process of EKP assessumet.

Some particular system is designed or defined to operate under exposure

to som EKP criteria set. For each particular case under the EM? criteria

set (or an appropriate sample of such cases) an in'ividual criterion assess-

sent can be performed. This requires the definition of an appropriate EKP

simulation set, an individual simulation corresponding to an individual

criterion. However, an individual simulation is in general not perfect, i.e.,

it has errors. These errors are in general different at each failure port.

The.failure-port CS pair concerns the survivability of the individual

failure port to the Individual criterion. The CS-pair system set extends this

consideration to the entire system, and forms the basis for an individual

criterion assessment. Extending this to the criteria set with its associated

iwuilation set one can determine the criteria-set assessment or system assess-

ment as a statement (ideally quantitative) of the system vulnerability or lack

thereof to the criteria met.

Hovwver. simulation is in general imperfect. Co one defines a process of

- ztrapolation to correct the signals at--failute ports under .simulation condi-

tions to . more accurate represent4LLun of criterion conditions, i.e.. extrapo-

lated oirJttions. With an appropriate definition of an extrapolation function

and a•asciated errors, one can begin to approximate (replace) criterion

responses by extrapolated responses. Then simulation -() in the previous

paragraph can be replaced by extrapolated (E). This defines the failure-port

CE pair, and the CE-pair system set to give an individual extrapolation assess-

sent. Extending this to the criteria set one has the system assessment in

terms of the extrapolation set as an approximation to the criteria set.
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The comparison between criteria-set response and extrapolation-set response

is a measure of simulation quality. The best 0'tulation (corresponding to some

individual criterion) is that which involves in some sense the least extrapola-

tion. The differences of simulation response from criterion response fall into

two categories. The first difference concerns the required extrapolation func-

tion or functions; the closer this function is to 1.0 for'all frequencies the

better is the simulation. The second difference concerns the errors after

extrapolation; the smallur the errors (or the closer the "exact" individual

extrapolation functions approach to some common (or universal) extrapolation

function) the better is the simulation.

This comparison of simulation quality to criterion can be turned into an

economic question. Hov much is high-quality simulation worth? One should con-

eider the alternatives. One can have poor simulation (extrapolation functions

far fvrm unity and/or large residual errors) with corresponding large uncer-

tainties in system assessment. This can alternately be interpreted as requir-

Liu large hardness margins at failure ports (ratios of signals for vunlerability

to extrapolated sI3r..ls, including implications of probabilistic distributions

of such ratios). While this may be cheap in terms of simulators it requires

large hardness margins with appropriate constraints on their distributions.

Alternatively one can have better simulation (at greater expense) and toiler-

ate smaller hardness margins (with appropriate attention to distributions).

This is perhaps an oversimplified view, but still realistic. There are still

state-of-the-art limitations on the technology for determinins what the best

trade-off is. Note that such trade-offs are still in the context of linear

extrapolation; nonlinear effects still require high quality simulation.
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ELECTROMAGNETIC CONSIDERATIONS
OF A SPATIAL MODAL FILTER FOR SUPPRESSION

OF NON-TEM MODES IN THE TrANSMISSION-LINE TYPE
OF E14P SIMULATORS

ABSTRACT

The subject of this note is the supptession or damping of ncn-T•M modes
in the transmission-line type of EMP simulator. This,suppression may be
accomplished by introducing a spatial modal filter (SMV), initially in the
output conical section of the simulator. In this note, we deal with the elec-
tromagnetic considerations of the SMF which is essentially decoupled from the
principal TE4 mode. Although these considerations, in general, apply to any
wave guiding structure (open or closed) that can support a dominant TE4 mode,
attention is currently being focused on the two-parallel-plate transmission-
line type of EDP simulator.
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I. INTRODUCTION

An important class of EMP simulators is the parallel-

plate transmission-line type. This type of an electro-

magnetic structure is essentially an open waveguide, between

the conductors of which a transient pulse with a-planar

wavefront must travel. In practice, however, the fields

obtained in the working volume can depart from the ideal

TEM behavior owing to the excitation and-propagation of

non-TEM modes. It has been known for some time [1 to 5]

that a finitely wide parallel-plate transmission line can

support and propagate TE and TM modes if they are excited

for any reason. Since the chief object of such an EMP
simulator is to produce an EMP environment appropriate to

a plane wave (outside the source region), it is desirable

to suppress the non-TEM modes without disturbing the TEM
wave. To successfully accomplish this suppression, a
clear understanding of the characteristics of the TEM and

non-TEM (i.e., TE and TM) modes is essential. Much

detailed work has been done concerning the TEM properties
of both the parallel-plate 16 to 9] and the conical

.10, 11] transmission lines. References [12,13] have
considered the conical transmission line as a launcher

and receptor of waves on the cylindrical transmission line
by introducing the concept of dispersion distances, or
equivalently, dispersion times. Formuals have also been

developed [13] for the TEM mode coefficient in terms of

the cross-section fields. Detailed calculations of TE

and TM modes of propagation are currently available for

the two limiting cases of narrow (separation >> width)
(11 and wide (separation << width) (4,5] plates. A para-
metric study is presently in progress [14] for the general
case where the separation to width ratio is not restricted.
This study will consider geometries of the existing (ALECS
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and ARES) and future (ATLAS I and II) transmission-line
type of £MP simulator facilities at the Air Force Weapons
Laboratory, as well as the laboratory model simulator at
Harvard University. Comparisons of the electromagnetic
field calculations from this study with the available

experimentally measured fields in ALECS and Harvard's
model simulator is expected to lead to an identification
of the effects of the higher order modes. In any case,

there exists a need for suppressing or damping the non-

TEM modes.
In Section II, the departure of the measured

fields in the working volume from the ideal TEM behavior

will be considered, and in Section III, available compu-
tations of TE and TM modes in the parallel-plate region
will be reviewed. Sections IV and V deal with various
aspects of the spatial modal filter, and design fermulas
are developed. The note is concluded with a summary in

Section VI.
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it. DEPARTURE FROM THE IDEAL TEM BEHAVIOR

This class of EMP simulators operating in a pulsed

-.- roade is a complex electromagnetic structure to analyze.

The complexity is partially due to the fact that the

input pulse contains a wide range of frequencies and,

consequently, the relevant dimensions of the structure

ranges from a small fraction of a wavelength to many

"wavelengths. Because of this; the simulator while operating

in a pulsed mode is a transmission line, a radiator and

an optical diffracting structure, all for the same pulse.

In reference 1151, the electromagnetic characteristics

of the simulator were qualitatively discussed by cate-

gorizing the frequency range of interest into a) low

frequencies, b) high-frequency asymptotiCs, and c) inter-

mediate frequencies.

At low frequencies, one has near-ideal conditions

in terms of simualtion because quasi-static considerations

apply and the TEM mode of propagation is dominant. The

main problem here is to minimize the impedance dis-

continuity and TEM field discontinuity across the junction

"between the cylindrical and the conical transmission lines.

Such a matching of the TEM modes at the input and output

"bends" is achieved by reducing the dispersion distance
. ~[12,UI]

At higher frequencies, the relevant dimensions of

"the simulator, e.g., width and spacing of the plate become

several wavelengths long, and ray-optical considerations

apply. Several canonical problems have been defined and

solved [16-19], which are useful in estimating the early-

*' time pulsed fields associated with conducting wedges

"and thus reduce waveform distortion. Some experimentally

measured data 1201 is availatle concerning the early-time

"fields indicating the (1/ variation of the spherical

"91
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wave launched by the conical line followed by edge diffrac-

tion and specular reflections. Some of the problems here

are.large dispersion time.;, edge diffractions and ex-

cessive ripple in the measured data.

[ However, it is the intermediate frequencies that

S.present the most serious problems. Relevant distances

now become comparable to wavelengths rendering both the

quasi-static and the ray-optic considerations inapplicable.I In this note, we focus our attention on the behavior of

- -'-the simulated electromagnetic fields in this frequency

regime by taking a superposition of the TEM and non-TEM

modes. The non-TEM modes are those supported in a

finitely wide two-parallel-plate open waveguiding

structUre, which are to be contrasted with the familiar

propagating modes of a closed rectangular waveguide or

a closed circular coaxial transmis.ion line. By taking

this view, one can define the problem to be that of

r damping or suppressing the non-TEM modes.without sig-

nificantly disturbing the desired TEM mode of propagation.

A typical geometry of this class of EMP simulator

is shown in Figure 2.1. This figure shows a vertically

polarized parallel-plate transmission-line type of

simulator. By virtue of ymmetry and practicality, it

suffices to construct the ,ymmetric half of the structure

above the horizontal symmity plane where a wide conducting

plane is placed. Accordi ly, Figure 2.1 shows the side

.iew of the simulator comr ising the top plate of width 2a

at a height b above the 4round plane. The plate-to-plate

separation (for a symmetric situation with two identical

parallel plates) is then 2b and the lengths of the conical

and the parallel-plate transmission lines are designated L
and w respectively. With reference to this figure, the

nonzero components of electric and magnetic fields for the

various modes of propagation in the parallel-plate trans-

mission-line region are:
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a) TEM mode

~x ~ ,R .iiwi'h 0 1.-
)y X m oz

b) TM mode (E mode)

E9 E~ ,E , H ,H with HZ 0
Z X y x yz

c) TE mode (H mode)

f .x Ry ,~ ,x with iz " 0
z X, y x yz

All of the above field quantities are functions of position

in the transverse plane and frequency. We shall now

summarize certain measurements made in the ALECS facility

V that are relevant in terms of identifying the departure

from the ideal TEM behavior. CW measurements r21] made

in the working volume of the ALECS facility have detected

what has been referred to as the "notch problem".
Specifically,' the transfer function from the input voltage

to the measured fields, when appropriately normalized

and plotted as a function of frequency, displays signifi-

cant notches at certain frequencies. For example, Figure 2.2

shows the magnitude of the no.n-alized transverse magnetic

field HX measured at the center (0,0,0) and the notch is

seen to appear at -25 MHz, with roughly a 130% ripple at

higher frequencies. Figure 2.3 is the normalized principal

electric field Ey measured at the same location. It is

noted that the principal electric field does not display a

notch behavior at the same location, but perhaps a small
enhancement. Correspondingly, the experimental measurements

in the scale model simulator at Harvard University have repio-

duced the notch behavior in the field quantities. The desciip-

tion of the experimental setup along with the measured fields
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in the model simulator are well documented in references
1221 and (23). A preliminary measurement of the trans-
verse magnetic field as a function of. frequency at a
fixed location of (0,0,0) was provided by Blejar [241
ar.d is shown in Figure 2.4. This measurement alzo
displays a sharp null in the magnetic field at -264 MHz

at the measurement location. The null is caused by a
cancellation of the transverse magnetic field of the
principal TEN mode by that of the first higher TM mode,

and the frequency of 264 MHz orn the model simulator
corresponds very closely to the -25 MHz notch observed

in the ALECS facility. Furthermore, in both configurations
(ALECS and the model simulator), the frequencies where

one would expect a higher order mode to be excited

corresponds approximately to the relevant dispersicn
distance Od* becoming equal to a half wavelength.
Considering a direct path from source apex to load apex
and another signal path along the edge bf the top plate,

d is given by

d 4 T 2 [4b a2 - L] (2.1)

where A is the wavelength corresponding to a frequency
where one may expect a higher order TM mode excitation,
and the other variables in Eq. (2.1) are illustrated in

Figure 2.1. Substituting the values for the various
dimensions, we find that the frequency of expected exci-
tation of higher TM mode is -25 MHz for ALECS and
-256 M3z for the model simulator at Harvard. These
compare well with the experimentally observed values of

-24 Mz for ALECS and -264 MHz for the model simulator.
It can be argued that the notch is due to the superposition of
the TEN mode and higher order TM and TE modes. The non-TEN
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6 dB 1.99

0 dB-

-6 dB- 0.501

12dB -0.251 i

-18 dB -0.125

-24 dB With reterence to figure 2.1, -0.063
S~the model simulator dimen os are,

be 1.08m; Sam 0.875m;

Le 3.3m; w- 1.1501-30 dB_ I I r- -"I I ", .I , .- - ----- r- 0.031

240 270 300 330 360 390

Frequency (MHz)

Sgure 2.4. Measured lIx/constantl at (0,0,0) in the

model simulator at Harvard [24]
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modes being evanescent at either end of the simulator, as
expected, all of the input impedance measurements are domi-
nated by the ijrincipal TEM mode. Based on these observa-
tiona, one may conclude that the notch occurs at the center
(0,0,0) due to the symmetry in the simulator as a result
of near cancellation of the magnetic field of the TEM mode
with its counterpart in the first TM mode. We do not
expect a near cancellation in the electric field at the same
location for the following reasons. The dominant TEM mode
is a traveling base because of the notched load at the end
whereas the TE and TM modes are standing waves owing to
reflections. The magnetic field (H component) in the TM
modes propagating in the positive and negative z directions
add and their sum cancels the H x of the principal TEM mode
resulting in the notch behavior. However the electric field
in the TM modes propagating in the positive and negative z
directions cancel from each other and thus one does not
expect a notch at (0,0,0) in th1 electric field. This is
consistent with the experimentally measured electric field
(Ey) data shown in Figure 2.3. Furthermore, near the top
yplate both H and E in the TM utode will have thex y

reversed aign from their values at the ground plane, leading

to no cancellation in either of these field quantities with
their counterparts ir the TEM mode. Wd also note that the
frequency where the notch occurs is also predictable from
the dispersion times/distances calculations.
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I1. CHARACTERISTICS OF NON-TEM MODES

An open wavegu!de formed by two perfectly con-

ducting parallel plates of finite width can suoport, in
addition to the dominant TEM rode, higher-order TE and

TM modes. These higher modes have suitably complex
propagation constants whidh account for the radiation loss

of the modes. Because of radiation, power flow and
stored energy are not confined to the inner region of

/ the structure. As the wave (a superposition of modal
distributions) propagates, there is a continuous "leaking"

of energy from the open waveguiding structure.
In closed waveguides, the higher modes are the

solutions of source-free time-harmcnic Maxwell's equations

characterized by axial field variation of the form
exp[j(wt-z kz)) . Each one of these modes with real
propagation constants (k z) below cutoff satisfies all

of the boundary consitions. Above cutoff kz is pure
imaginary and the modes are evanescent. Also, these
modes possess finite energies in a cross section and

display orthogonality and completeness properties.
In contrast, the modes on an open waveguide form

a discrete spectrum of leaky modes satisfying Maxwell's
equations and boundary conditions. However, any cross

section extends to infinity and the fields can grow
without bounds at large distances from the simulator cross

section. These leaky modes on open waveguides do not
form a complete orthogonal set and have to be supplemented
by a continuous spectrum. The variation of an arbitrary
mode can be separated into transverse and longitudinal
parts as follows:

i(x,y,z,s) (XYs) e (3.1)

100



EMP 1-27 247-15

where F denotes an arbitrary field component, and

denotes variation in the transverse (x-y) plane. The

exponential factor displaysiaxial (z coordinate) variation

with . (Laplace transformation variable corresponding

to the z coordinate) being the longitudinal complex
wavenumber. The complex frequency is denoted by s and
it is the Laplace transforpmation variable corresponding
o the time t . Setting,

1 2 ( 2/C22 2 = 2 2 (3.2)

we have,

2 p (3.3)

To exhibit the cutoff behavior, consider s = jw ,

y - jk and • Jkz

* 3kz -t 4kJk) + (±p)2 (3.4)

or, kz M t 4• p2 - (0 + I a) (3.S)

IXn the integral equation formulation [1], complex p
multiplied by a factor with linear dimension appears in
the argument of special functions. In order to compute
the various field quantities, one looks for the roots of
transcendental complex functions of p in the
p-plane. These functions are obtainable in closed form

for the limiting cases of narrow anA wide plates. Denoting
a typical root by pn,m 1, the corresponding longitudinal
complex wavenumber for this arbitrary mode becomes

k 04 2 + 4 1 + 3 (3.6)
= n,m n n,m n'm

101



247-16 EMP 1-27

Pn,m values of interest are approximately pure imaginary
with relatively small neqative real parts. Let

Pn1 m Unm + j Vn,,n (iUn,mI << IVn,mI)

so that

k - U )+2j u v (3.7)
2 n,m n,m nm n,m nm

If Pn,m was pure imaginary (i.e., un,m - 0) , the

cutoff behavior is easily exhibited by the factor
I -I N7--v . Non-TEM modes aie not supported when v

exceeds k and kz becomes pure negative imaginary in
the exponential factor, exp (-j k z) , and the modes
are evanescent. The cutoff behavior for the special case
when [s=jw, y-jk and p n,m=j Vnm I can be summarized as
follows. For these special conditions, the longitudinal
wavenumber k is given by

kB nm; (with Bn,m > 0 and an,m = 0] for propagation

'm OLn m+Jcntm; [with Bn,m > 0 and an,m < 01 for evanescenc

(3.8)
Correspondingly, the longitudinal variation of the fields
exp(-j kznm z) exhibits the transition from propagation
Into evtnescence. However, the complex singularities
(pn,m) do have small negative real parts and the transition
near cutoff is less abrupt. In the regime of evanescence, the
longitudinal wavenumber kznm becomes largely pure
imaginary with a small real part. Consequently, the
exponential longitudinal variation exp(-Jkznm z) exhibits

evanescence.
Furthermore, t waveguiding structure formed by two

finitely wide plates, has two planes (x-0 and y-0) about
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which the field3 can be symmetric or antisymmetric [25].

Such symmetry decomposition can symbolically be represented

by indexing the p-plano singularities as

(pt,,E or H)

where nm correspond to the field variations in x

and y diractions. The two ± signs in the superscript

indicate symmetry or antisymmetry along the transverse

x and y directions and E or H denote TM or TE

mode. Thus, such a representation of the p-plane singu-

larities uniquely specifies a mode and its symmetry

properties. Consistent with the above notation, the

modes themselves can be denoted by E(t±,) (or TM ±})
and H(t't) (or TE(±,±) ).n

n,m n,m
These modes in open waveguides formed by a pair of

finitely wide parallel plates are found by formulating

two different scalar integral equations (of the first

kind) for the current and charge densities on the
plate. Under certain approximations (separation >> w!.dth
or vice versa), the integral equations can be solved
analytically by first tranforming them into a Fredholm

integral equation of the second kind [1,4,51 and using
perturbation techniques.

It is not our intention to show detailed modal
distributions of these higher modes in this section, but
to point out the methods employed and availability of
field plots. Specific calculations of the TM modes in a
qeometry corresponding to the model EMP simulator at
.arvard are currently in progress for later comparisons
with the measured data. Such comparisons are expected to

lead to unambiguous identification of modes.

103

• 'I



'47-18 EMP 1-27

IV. ELECTROMAGNETIC CONSIDERATIONS OF SPATIAL MODAL FILTERS

The object of introducing a spatial modal filter

is to load or damp the non-TEM modes (i.e., TE, TM)

without significantly disturbing the TEM modes. One
method that has been experimentally implemented

in the context of TEM cells [261 with some cýegree of
success is by inserting RF-absorbing material [27,28]

along the conducting walls of the waveguiding structure.
This technique lacks an analytical basis and also does
not fully exploit the uniform characteristics of the
dominant TEM mode for damping the non-TEM modes. If we
recognize the fact that all propagating modes have spatial
properties, one can, hence, take advantage of certain

spatial properties to selectively load the modes [29].

In a two-parallel-plate transmission-line type of EMP
simulator, all of the important characteristics of the
principal TEM mode, both in the parallel-plate region [91

and the conical plate region [10,11], are well known and
documented. The quantities of interest are the charac-
teristic impedance, equipotential and field distributions,
and field uniformity. Later in this section we shall use
a knowledge of these quantities in developing a spatial
modal filter. Such filters can take various forms and we
dimensionally categorize them below:

A. Zero Dimensional

A zero dimensional spatial modal filter will
essentially act like a directional coupler in a transmission
line that couples to backward propagating modes. In the

case of a simulator under consideration, this type of SMF
can take the form of two receiving or parasitic antennas
(equivalent dipoles, loops) suitably oriented on the tcp

plate or the ground plane so that the TEM mode is uncoupled.

The sensitivity of damping of the non-TEM modes is governed
by local field ratios.
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B. One Dimensional

One-dimensional spatial modal filters can be imple-

mented by having longitudinal slots both in the top plate

and the ground plane. The longitudinal slots (directed along

the z-axis of F4.gure 2.1 in the parallel-plate region an,!

directed alonq the spherical radial coordi,tate in the conical

region) will be resistively laded by transverse resistors

(x-direction in 1igure 2.1). By definition, the only mode

with longitudinal component of magnetic field (H ) is the
TE mode and, hence, this mode has principally transverse

currents (Jx) which couple to the transverse resistors.

Consequently, this form of SMF is essentially uncoupled

from the principal TEM or higher TM modes while loading
the higher TE modes.

C. Two Dimensional

An extension of the one-dimensional SMF is to
introduce *loading sheets" that are comprised of a two-
dimensional (transverse and longitudinal) array of

resistors. In the top plate and the ground plane, one
would have only transverse resistors, but in the space
away from the simulator plates, the loading sheet will

be two dimensional. The sheet will be located along an
equipotential surface of the principal TEM mode. This

implies thit the sheet is electromagnetically invisible
to the principal TEM mode while coupling and, hence,
damping the non-TEM modes.

D. Three Dimensional
The two-dimensional loading sheet described above

can be repeated to fill some portion of the volume between

the top plate ard the ground plane resulting in a volumetric
suppressor of non-TEM modes. -

There are certain constraints to be placed on the
choice of the -olume of space wherein such a filter can be
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placed. For example, the filter should not be close to the

working volume of the simulator to avoid any coupling to

the test object. Furthermore, the higher-order TE and TM

modes become evanescent at a certain distance away from

the terminator in the output section. For this reason,

..little is gained by placing the volumetric SMF near the

termination. Such considerations indicate that the SMF

should be placed under the output bend extending toward,

but not close to, the terminator.

In Section V, we develop an appr6ximate.analytic-al

basis for estimating the sheet resistors.
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V. ESTIMATION OF SMEFT IMPEDANCES
In this section, we derive ralations useful in

estimating the longitudinal and tti.'verse resistor values

in the individual Gheets of a volumetric suppressor. A
dross-sectional view of the SMF is sketched in Figure 5.1.

Essentially the mode filter would consist of several
layers of resistor arrangement, wherein each layer

consists of a two-dimensional array of resistors along

the axial and tranverse directions. Each layer would
coincide with a TEM equipotential surface in a conical

transmission line. The equipotential and field calcula-
tions in a conical transmission line have been reported
110,111, and they are based on stereographically pro-

jecting the two-conical-plate line into a cylindrical

line of two circular arcs on two different circles. The
curved-cylindrical-plate problem is later solved by the
method of conformal mapping for the TEM quantities.

The physical quantity that is relevant for the SMF
design is the TEM equipotential surface, an example of
which is shown plotted in Figure 5.2. In this figure,

the top plate is held at a potential of V0  with the
ground plane as the reference. The equipotentials (magnetic
field lines) are shown in steps of 0.1 V and the stream

0

-- iIlines (electric field lines) insesof 0. 1 Uo theU s h

total current flowing on half of the top plate. The
individual resistive sheets of the volumetric suppressor
will oe made to coincide with the calculated surfaces.

In estimating the values of the transverse• (Rt)
and the longitudinal (R ) resistors, it is useful to
view the two-dimensional array of resistors on any given
equipotential surface as a resistive sheet with an impedance

of Z We now consider the following two canonical

problems useful in estimating RL and Rt . The two
problems are posed and analyzed by viewing the mode
suppressor sheets as plane wave absorbers.
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Top View

Cross Sectional View
0 looking towards

the terminator
Terminator

Source

t -j.Top plate

*. , , , J • .•,_.0.

Ground plane

"Top View Cross Sectional View

Figure 5.1 Structure of the volumetric spatial modal filter
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Figure 5.2 A typical TEM equipotential and electric

field lines in the conical transmission line

[(b/a) -0.857 and (L/b) =4.2; scale model
(TEM)'

:simulator with Z c 82nl from top plate

to ground plane]
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A. TM Waves Incident on the Resistive Sheet

Consider a TM wave incident on the resistive sheet

(Zs ial 0), as shown in Figure 5.3--. Denoting the induced

surface current density on the sheet by Js (A/m), the

boundary conditions on the tangential components of the

electric and magnetic field lead to

Etan -E, sin(a) - Er sin(a) - Et sin (a)(51

S............ . . ..... • The difference in tha tangential magnetic field is

AH tan 0. H top - H bottom M H i + H r - Ht = is M E tan /Z s (5.2)

J s is positive and is directed froth left to right in

Figure 5.3a. Note that the free space characteristic
impedance zO0 is given approximately by

Ei r Et ~
Zo " " 10 (5.3)

Using Eq. (5.3) in Eq. (5.2), and then making use of

E r = E i - E t from Eq. (5.1), we can get

E.t . 2 Zs 8 s .4)
Ei 2 Zsa + Zo 0S:(a)

For fixed values of E i iand a ,the power dissipated in•

the sheet per unit area,1

i ta s "(E 2n/Zs- (E 2 sin 2(aL)/Zs

= zs 2 Z S + Zo snl)

(5.5)
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i is

Sheet of sheet impedance E
Z5 (n ) carrying a
surface current JCAhTO

S Ht

a)T M wove incident on a resistive sheet

H1  Hr

Sheet of sheet impcdcence
Z1(2l carryinga
sixface current J5 (AMr

1)T E wave incident on a resistive shedt

Figure 5.3 M ode suppressor sheets viewed as plane wove absorbers
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\ Now the powier dissipated as heat from the incident wave
per unit area normal to the incident wave is

(2)
Pw P/sin(a) - (E f5.6)

where f is the fractional power lost, and is given by

"oz z""i
f 0 P 0 sinWcza°"T -= Ei' =~ 7 S isin 2 Zs + Z ain(a)

(5.7)

Setting

in o n 1 (5.8
Z0.a

we have

f "--I 2n (5.9)

We may now maximize the fractional power lost by requiring

df -0 leading to h opt 1/2

This give an optimum value for the sheet impedance of

Z (ot 2 0sn (5.10)

Equation (5.10) is now useful in estimating the longitudinal
resistors R which carry the current for the TM mode of

propagation.
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B. TE Waves Incident on the Resistive Sheet

We can use an entirely similar analysis as in the
* TM case for the TE case. Consider a TE wave incident on

a resistive sheet of impedance Z, in .Z at an angle a as
shown in Figure 5.3b. Let the induced surface current on
the resistive sheet be denoted by Js(A/m). The boundary

S.... conditions on the tangential fields are

Etan E "i - Er t-Et

The difference in the tencential magnetic field is'

Atan - Htop - Hbottoma -Hi sin(a) + Hr sin(a) +'Ht sin (a)

" J - (Eta / ) (5.12)
x tan 3

3 is positive and directed into the plane of the paper in
Figure 5.3b. As before, using Eq. (5.3) in (5.12) and later
using Eq. (5.11)1, we can get

Et 2 sin('a)Ei 2 as sin(a') + zo 0 5.

Once again, the power dissipated in the sheet per unit
area is

PinE 3 -CE 2  /Z)-(E 2 /Z)tan .8 tan a t 8

"1 2 Z aSin(a) ( 5.14)
z 2 z Ssinici, +Z 0

Using Eq. (5.6), the fractional power lost is now given
by
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w 2 ZZ sin)a 2

f -r 0 P 0edn to (oCt + / (.

Esin (a Z sin (ai 2 Ssinc) + o (515

Ip [ v (5.16)

Zs ~ ~ + 2vina

where v - (Z a sin(cu)/ We may now maximize the

dissipated power by requiring

df

a- - 0 leading to Tv es 1/2i(5

This gives an optimum value for the sheet impedance of

Z (opt) 2 (5.18)a 2 hin cz)

Once again, we note that for the TE case, only the trans-

verse resistors carry current and, hence, Eq. (5.18)

applies to the transverse resistorsR
In either case of TM or TE waves incident on the

resistive sheets, the values of the resistors RIand

R t are dependent on the angle of incidence of these waves

onto the sheets. In a simulator configuration, this angle

(a) is, of course, a variable quantity and, consequently,

an experimental optimization of the particular values of
the resistors is inevitable.

However, at high frequencies, where ray-optic

considerations' apply, one can estimate the angle a by

considering a typical ray path. It is estimated that the

present high frequency ripple of ±30% can be reduced to
within ±10%. At intermediate frequencies, the angles are
harder to estimate, but effective removal of energy from

the non-TEM modes results from multiple passes. It is
likely that for E modes (TM case), the ratio of E. to

Ex or Ey may define an effective angle a • A future
memo will address these issues specifically.
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For the experimental evaluation, initially, a

typical angle may be chosen in designing the filter and,

later, experimentation around these values will determine

the final values.

In successfully implementing these corcepts in a

given-experimental situation, there will be several

associated problems and considerations unique to the

experiment. For instance, in a model simulator experiment,

the power levels are low and, hence, energy dissipation

--in the resistors is not a serious consideration. However,

qn a full-scale facilitiy (e.g., ALECS), it may beco e

necessary to place the resistors in plastic tubes fi Fd

with oil (if required). Also, in an on-site configuIration,

the mechanical problems of supporting and holding the

sheet along equipotential contours are much more severe.

There are questions like how far outward in the cross

section should the sheets extend. Such considerations

and a detailed design, fabrication and evaluation of the

proposed volumetric suppressor will form the subject of

a sepa:ate report.

-11
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VII. SUMMARY

A two-parallel-plate transmission-line type of

EMP simulator has been historically employed to propagate

an electromagnetic pulse with a plane wavefront. Since
the pulse consists of a wide frequency spectrum, the
structures that have been built propagate modes other than

the principal TEM mode. Consequently, techniques of
non-TEM mode suppression is an important element in the

- -advancement of simulator technology. In this note, we

address the problem of mode suppression and, in particular,
the electromagnetic considerations of a volumetric

suppressor. This suppressor is the result of one of
several techniques of mode suppression and believed to
be the most efficient. Empirical relations are developed
for computing the resistor values required in the fabri-

cation by viewing the suppressor as a plane wave absorber.

An important feature of the SMF is its location.

Figure 6.1 shows the side view of a parallel-plate EMP
simulator, indicating the approximate locations of two
possible SMF. The SMFs have to be located away from the

two apexes where the non-TEM modes are evanescent. It is
also essential to place the SMF so as to minimize any

coupling effects with the test object.
Finally, although our present interest is in EMP

simulators, it is recognized that the mode suppression

considerations presented here are fairly general and can
apply to other types of multimoded structures (e.g., TEM

cell) where the non-TEM modes are also undesirable, and
due to the lack of radiation losses can cause even more

severe problems.

1
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initial SMF in the output
sectionpossible second SMF in

the input transition.

Figure 6.1 Side view of the simulator shlowing the approximate

locations of two possible spatial modal filters (SMF)
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AN INVESTIGATION OF PORTABLE
EMP SIMULATORS/ALTER MATE SIMULATORS

ABSTRACT

A theory is developed which defines the technical objectives for portable
EVT simulator experiments and calculations. It is shown that under certain
conditions, a configuration of portable sources need only excite a prescribed
external interaction response on a class of systems. Under these conditions,
the source configuration will excite the same electrical quantities within the
system as would an EMF. Considerable attentior is devoted to the demonstration
that these conditions must include an accounting for the external environment to
the system under test as well as the degree of electromagnetic rigidity of the
portable sources. Finally, calculations that were phosen to address the plaus-
ibility of achieving the described external interaction objectives are presented
and interpreted according to the required conditions.
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SECTION I

INTRODUCTION

The broad objective of this effort is to guide the experi-
mental invesitgation of electromagnetic pulse (EMP) simulation
by portable simulators. We perform two distinctly different

.... .. . types of analysis directed toward this objective. First, we
develop a theory that results in the definition of technical
objectives for both experiments and calculations, Finally,
we perform calculations to determine whether a very idealized
experiment could possibly achieve the required objectives.

The analysis resulting in the technical objectives consists
of developing the form of a transfer operator equation in
sufficient detail to identify the significance of all terms.
Specifically, attention is directed toward clearly identifying
the physical quantities related by the transfer operator as
well as the physical quantities on which the transfer operator
depends. To facilitate the discussion of the physical quan-
tities it is necessary to discuss the type of system we wish
to excite with the portable simulators. The class of systems
for which this study is applicable are those systems that are,
in effect, imperfectly sealed metallic enclosures. Important
systems that belong to this class are aircraft, missiles, ships,
and tanks. The breaks in these enclosures are referred to as
apertures and they might correspond to windows, hatches, or
portions of deliberate antennas that are intended to allow
energy to flow into the system.

The operator equation relates electrical quantities
excited within the actual enclosure (system) to the current
density induced on metallic seals placed over all of the
apertures of the imperfectly sealed enclosure. The existence
of this equation would seem to imply that if a configuration
of portable sources excited the same current density on the

S( 123
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seals as did an EMP, then internal electrical quantities with-
in the enclosure of the unsealed system would be identically
excited by either the EMP or the portable source configuration.
This would be the case under the following conditions; the
portable sources must be electromagnetically rigid, i.e.,
unaffected by the presence of any scatterer, and the external
environment of the system must be the same for the portable
source configuration as for the EMP. For example, an aircraft
having the appropriate seals correctly excited by rigid port-
able sources when parked on the ground, can only be viewed
as having been excited by the corresponding EZP when it is
still resting on the ground and in particular is not in free
flight.

Even with these limitations, we see that it is possible
to assist the alternate simulation program by performing only
external interaction measurements or calculations. The
initial source configuration can be determined by employing
only external interaction considerations. We emphasize that
we expect the focus to be on external interaction only in the
initial program stages because we anticipate that the local
sources will not be capable of exciting exactly the same
external interaction quantities on the metallic seals as
would an EMP. In order to assess these effects as well as
non-rigidity degradation, we expect that internal electrical
quantities will have to be measured for excitation by the
portable source configuration as well as for excitation by
a more orthodox simulator which represents the EMP excitation.

The environment and source rigidity conditions previously
discussed result from the dependence of the transfer operator
on these factors and not the quantities this operator relates.
This source rigidity requirement causes special concern in
that any physically realizable portable source is going to

124
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have structure that can interact with the fields r-flected
from the system under test. This is of particular concern
because it is presently anticipated that the configuration
of portable sources will be in close proximity to the system
under test. The choice of calculations to perform, which
represented an idealized experiment, was made with the issue

---of source rigidity being a distinct factor.

The problem for which we made our calculations was the
excitation of a sphere in free space by a plane wave and by
various configurations of idealized local sources. These
calculations were performed in the frequency domain for a
range of frequencies starting at zero and extending to approx-
imately three times the first resonant frequency of the sphere.
Well-established plane wave solutions exist for this problem
and our method of obtainina our plane wave solution can be
verified by comparison of our results to the established re-
sults. This is necessary because our method of obtaining the
plane wave solution is the same as our method of obtaining the
source configuration results and no data is presently available
to verify those calculations. As a general conclusion, our
calculations indicate that our choice of local source config-
uration can approximately excite the desired external inter-
action current density at a shorted point of entry only if at
least one local source is in close proximity to the shorting
surface. This result increases the need to study the effect
of the degree of rigidity of physically realizable sources on
the alternate simulation problem.
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SECTZON 11

TWORETICAL BACKGROUND

This investigation concerns the local excitation of systems
that are predominantly metallic and is valid for those fre-
quencies or times for which the metal can be considered to be
perfectly conducting. The equations that form the basis of
this investigation of portable EMP simulators is a set of
equations that recognizes those essential features of classical
aperture coupling analysis that have relevance to complex
systems. Since this approach is based on aperture coupling
equations, one might be concerned with its relevance to other
types of penetrators, e.g., deliberate antennas. Such pene-
trators have associated apertures or else no energy could
penetrate the sealed skin of the system corresponding to that

* penetrator.

ficst we will present the general for= of the equations
that provtde the basis of this study and draw all of our
theoretical conclusions by referring to properties of this
general form. Next we will present a somewhat detailed
derivation of these general equations for a complex interaction
situation in order to give a more concrete meaning to the
general properties on which we based our theoretical conclusions.
The form of the underlying equation is as follows

where the meaning and significance of each tirm requires consider-
able attention. First, we emphasize that equation 1 describes
the relationship between electrical quantities on two different

physical systems. One system is the actual system of interest
and the other system is that original system modified by
matallic shorting surfaces covering all apirture- fiicluding
those associated with antennas). For illustrative purposes
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consider the system depicted in figure 1. One system is the

aircraft in its environment with the apertures S1 and S2

unmodified and the oher system needed to give equation 3
meaning is the same iircraft in the same environment with

metallic seals covering S1 and S2 . In equation 1, the
notation J was chosn to denote "magnetic current," but
it is simply a(r') xI (r') where r' varies over all of the

,mathematical surface corresponding to the open apertures in
the original system, (r') is the outward normal at r', and
CEt(r') is the tangen ial component of the electric field

induced in the open perture. The quantity J . (r) is the
S- I external interaction" current density induced on the shorted

J1 system with r rang g only over the shorting surfaces. It is
important to note t at even though r and r_ refer to different
physical systems, t.ey mathematically refer to the same set
of points. This distinction allows a discussion of the mathe-
matical nature of euation 1 that is not confused by the
dual physical nature of the problem. It remains to discuss
the meaning of L in equation I to proceed. More specifically,
L is a linear operator that depends on a variety of quantities
associated with tho system, its environment and certain
aspects of its excitation. Just what thesse quantities are
plays an essential role in the underlying theory of portable
EMP simulators and we will elaborate on what these quantities
are when presenting the details for the system depicted in
figure 1.

It is now necessary to introduce an additional equation
to augment the information contained in equation 1. This
equation also represents a general form and is

= () (2)

This equation is a mathematical statement of the fact that
M(f') is sufficiett to determine a variety of electrical

127
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8 can correspond to a voltage, a current, or a field

component) that are excited within the system by fields

penetrating through the apertures. in equation 2, L8 is a

Linear operator that depends an the internal structure of the

system and the choice of the internal electrical quantity

that is being determined. Next we in.troduce a step, the

_legitimacy of which is currently being studied using a field

equiralence- point of view. Specifically, it is assumed that

the L appearing in equation 1 has a unique inverse, Ll, so

"that from equation 1 we can obtain

L -T.1 (3)

Combining equations 2 and 3 we obtain

T-O (4)

where

T LtL 1  (5)

and the superscript a is explicity introduced to indicate

that T depends on the environment external to the system.

If the same system were placed in two different environments,

then the a designation for each environment coU d1 change to

acco=4odate a mathematical representation of thk fact that

a I + 2
___ ~ ~ T __ __To 2t

if the external environments for the same system are sufficiently

different. Part of what we shall mean by the external environ-

sent is the physical structure of the portable EMP simulators

that are being investigatel. When we discuss the details
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with the system and environment depicted in figure 1, we shall
emphasize this source structure dependence and make a crucial
distinction between rigid and nonrigid sources.

It is possible to present all of the portable simulator
theory on equation 4; however, that equation will be modified
to conform to the prevalent notion that both the external
interaction current density Jj.I an•d the external interaction
charge density aE.I. are required fo: the ultimate determina-
tion of the internal quantities Q8 " For non-zero frequency,
it follows from V,*Ji - iEia that J suffices to
determine GE.I., so the requirement that aE.1. be separately
determined mVst be superfluous. There are a number of pos-
sibilities why it might be convenient to separately view
aE.I. as a desired input and viewing it as such .leads to the
following decomposition of equation 4

-T a 1  4+ T BaE (7)
: q:B TjF-E.r" ÷ T•aE.I. 7

as the basic equation.

At this point we could present the underlying theory of
portable EMP simulators ky referring to either equation 4
or equation 7 if we did n)t have to deal with the real
physical structure of the portable sources.

The means whereby this aspect enters the consideration is
rather complex and is treated by giving a more explicit meaning
to these equations. Specifically, this will be accomplished
by deriving more e:cplicit representation3 for equation 1
and equation 2 for the situation depicted in figure 1. First
.we introduce the following definiticns:

S: the surface of the metallic enclosure (aircraft)
augmented by the mathematical surfaces S1 and S2

VL: is the volume of a lossy medium in the proximity of
the enclosure (earth, water)
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SL: the surface bounding VL

V : the volume of an object in the proximity o.f the
p enclosure (i.e., an aircraft carrier)

S p: the surface bounding Vp
Vs: the volume of a subsystem contaiv,4i ',,.thin the

enclosure
Ss: the surface bounding Vs
V0 : the volume exterior to Sm bounded by $m' S S L;

Sr, and the hemisphere at infinity
Vi: the volume interior to Sm bounded by Sm and Ss
Vj: the volume of a rigid source of an electromagnetic

wave, 3, and it is contained inV 0

V : the volume of the portable radiator
Sr: the surface of the portable radiator
S : the portion of S over which the surface tangential

electric field is rigidly specified

The essential equation that ti~is approach is based on is the
dyadic identity

(8)

heeA' and 2 ;) are, at this point, a general vector

and a general dyadic that must satisfy certain behavior
requirements (e.g., dIfferentiability) but not necessarily
any equations. In equation 8, S is the surface bounding V

and f(r') is the outward normal to V. Next. the volume,
bounding surface, A(r'), and 2(r';r) are specialized. V is .

chosen, in turn, as V0 and VI and A(r') is chosen as H(r')
and WiE?'). We also choose 2(r';r) as appropriate Green's
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dyadics , that satisfy the vector wave
equation

(9'V'x-k~ ~C ,r)- ISCr -r 1 c-or eV.~ (9)

and subsequent1y the a subscriot of r and r'will automatically

be implied by the subscript on G when it is not expliciti.y
indicated. Boundary conditions to be satisfied are

i c _, x (V 'x ~r _. ,s .) - o r ;e Sm (10)

ao , 0 'S US US (11)

n(r')x(¶ 2x0(r' r))- ;(r')x(V7x2L(rI.r)) r LS 1a

n(r')xco o(r*,r) - n(r')xcgL(r',) r'ESL (12b)

The equa ion satisfied by •LIr' r) is

)•L7r',r) - 0 reVL reV0 (13)

The equations satisfied by the H (r') are

V'Vx- )H(r1) 0 CL-I0-- I 'xJ(r' CL-0 (14)

It also follows from Maxwell's equations

v'x% (r') - -iWC E(r') E'I s (1s)

Substituting equations 9, 14, and iS into 9 Cor V-V0 or VI
and using the property of the 8 function, we obtain
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-~ ~~ ~ 0 fq~Q~I dS'
q'mp,r,L f 5qI

AT f (Er) ~Ii jd (17)

where a1is the unit outward normal to the sphere at infinity

Sd

f jr#)[^(t~xVIX(rlr~l+ iWe [(r')xE'(r') )1 (r';r) fdS'
(iS

where e is the appropriate dielectric permittivity and

1(E mf V'xJ (f') 2o W; SO) dV' (19)

Using equations 10 and 11 as well as the fact th

n(r')XE(E') -0 reS- S m iS 2 )US pU(S -S 9 (20)

we find that

f ~ '~'~ ~ dS' 0 (21)
fSP I--OY-,
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W- (Eo) (22)

nE , dS' i -0 ].r)xE I -•L(rI;r) dSI

+)r E'211C ( ra dS)

S- 0,4 (23)

and because K, l, and 20 satisfy the radiation condition

i g1 0 12 ds' -0 (24)

The remaining quantities to evaluate in equations 16 and 17 are
the surface integrals over S and S. Substituting the equa-
tions appropriate for the lossy half space, that is

2(V'XVIX-W 20)_L(_) - 0 r'eVL (25)

and

V'x(r') --iwc(r I- ,vL (26)

as well as equation 13 into 8 we obtain
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/ a"L I LCEOx 1 L I](r + iAe n(r')xL(rE) 2rL(r';r) dSI

-=]_ IR (r')[ l()x V" X lr(_W r) + iWC Wr'lxk_(r'i _Ll;-dSj

(27)

The second integral in equaticn 27 is zero due to the losses
in VI(or the radiation condition if VL is lossless). Using
the fact that the tangential components of E and H are contin-
uous, across SL as well the boundary conditions in equation 12a
and 12b we see that the integral over SL in equation 16 is equal
to the integral over SL in equation 27 which in turn we have
just shown to equal zero. The integral over Ss will also
equal zero and the manner in which this can be seen depends

-. on the physical properties of the subsystem occupying Vs. If
it were totally metallic, the boundary conditions on i and
G, would make the surface integral vanish in the same manner
they did for the integral over S p. If it were a homogeneous
dielectric, then the boundary conditions would cause the
surface integral over Ss in the same manner the surface
integral over SL was caused to vanish. If it were some
hybrid of dielectric and metal, a combination of the arguments
would be used to cause the surface integral to vanish.

"We can now write equations 16 and 17 as

E m - KoJ(lr_) (28)

and

!1--(rE) KiJ(r'l) (29)

S. .135
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where

r"E- ) + s(EO) (30)

with L(E) and S(r0) defined by equations 19 and 22 and the

operators Ka are defined by

K (r_.')- iwO<fJc_'). Cra) dS'

rS 
2

"a - O, (31)

and we have made use of the fact that the tangential components

of the electric field are continuous through the apertures so
that

-•o(£)x, oW(,) (_.)x W (r) J_'(SUS 2  (32)

Now we focus our attention on F(E) appearing in equation 28.
The meaning of this quantity is an extremely important aspect

of the theoryjl~ehind portable 'EMP simulators. It would be
a very diffic:lt task to evaluate equations 19, 22, and 30

in order to determine the full significance of F(V]. Instead,
we will simpl!' utilize certain key features of those equations

as well as equations 28 and 31 to determine what F(E) must
be if all the required equations were evaluated. First, we
note according to equation 19 that I(MO) is excited by the

rigid (interaction independent) source J(r') and that accord-
ing to equation 22, S(E) is excited by the rigidly specified
n(r')xE(r') for r'eSg. Next, we note that according to these

equations, both I(E) and S(E) are insensitive to the size
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of the apertures S1 and S2 and in fact they are insensitive

to whether or not these apertures are even present.'- Using

these observations in conjunction with equation 31 as the
aperture size becomes zero and using the result in equation
28, we see that F(E) equals % (r) for the special case
where all apertures are sealed (short circuited). Mathema-
tically, we express this evaluation of r(E) as

7r (5 r) (33)

where the superscript is introduced to indicate "short
circuit." We note that M(o) is the short circuit magnetic
field at some point E with apertures sealed, but all other
aspects of thR external environment including the proximity
and structure of the radiator, Sr, unchanged.

Substituting equation 33 into equation 28 we obtain

I 18.c) . (r)-K 3 Cr') (34)

Next, we define n(r) - •(r) - -•0(r) for reS1 US2, use
the fact that

A(r)xg - n (r) x!I_ (r) (35)

and employ equations 28 and 34 to obtain

lira ()x( -0 +K 1).(C) (36)

where we have used the definition

(E)x4"" (r) m J..1. (37) (37)
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and we have the desired result in that equation 36 is the
more detailed representation of equation 1.

Before we can present our theoretical conclusions, we
must present our more detailed representation of equation 2.
We have, in fact, already a representation of equation 2 for
the case where the desired internal electrical quantity is the
magnetic field. For that use we might choose the symbol B
as B so that QinH and L,-Lj-K1 . Another example where the
structure of L8 changes depending on the choice of 0 is
readily demonstrated by considering the case where the desired
internal electrical quantity is the electric field E and we
denote B as E so that QE-E. For this case equation 2 becomes

OE . (r) (38)

where

LEm- -7-Vxxi (39)
I.e0

Finally, we will discuss the more important 'case where the
desired internal electrical quantity is a current. For this
discussion consider that part of the internal subsystem
occupying volume V5 in figure 1 contains a wire and we choose
a local cylindrical coordinate system having its axis along
the wire and having the local azimuthal vector denoted
# (w') at the point on the wire where we wish to determine
the current. The argument of this unit vector, L', denotes
the circumferential position on the wire. With these defini-
"tions, the current on the wire is

I fdLl) ( (40)
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We see that frcm equations 29 and 40 that

Q w LcJ (S') (41)

where we have denoted I,= 0 and

"J ,(r') -dLi$ ()KJ j. .. (42)

We have now presented equations 1 and 2 in sufficient

detail to draw our desired conclusions. We will base our

conclusions on equation 4 which contains exactly the physics

as do equations 1 and 2. The specific points we wish to

make are i) the external interaction current density, .
can be excited by either a rigid source, a non-rigid source,

or a combination of the two types ii) the transfer operator,

T8 , depends on the external environment to the system iii)

Ta depends on the internal environment iv) T' depends on the

internal electrical quantity, QW, being determined v) T
depends on the rigidity of the source. 'Equations that speci-
fically illustrate each of these points are identified with the
numbered points as follows: i) equateions 19, 22, 30, 33, and

37 ii) equations 11 and 12 iii) equation 10 as well as the argu-

ment that eliminated the integral over S5 iv) equations 5, 39,
and 42 v) equation 11.

The remaining portion of this report will be devoted to the

calculation that represents the idealized experiment.

139



248-22 12* 1-27

SECTION III

MAGNETIC FIELD I.NEGRAL EQUATION FOR A SPHERE

If we impose an orthonormal coordinate system s,t on a
"closed surface possessing continuous curvature such that

sxt - n'the outward normal to the body, we can write the
Magnetic Field Integral Equation 'MFZE) as the following
system of coupled scalar integral equations

""'r inc r-' ) r (E')J (r)

+B(r_,')J(r') ) dS' (43a)

t(r) .- *(r)*H (E)4 (fC(r,r')J SrW)

+O(rirt) t (r')) dS' 4b

where

A(r_,r_ l v•-_ ) _. ;_.• _, (44a)
A(r,r') -Q(- •--' I)((r)_(r-r-')xA(r')I (44b)

C(rr') " Q(Ir_-.' ) - (r) r)xs(r;)J (44c)

- eikR
Q(R) (ikR-l)4- - (45)

and J (r), J (r) are defined through

t - (r)s(r) + J((r) (4b)
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For a sphere -if radius -a- centered at the origin, n-(_!a)

for all points on the surface. This permits us to greatly

simplify the form of equi.tions 44a - 444 even before specifying

our actual choice for s and t. Formal manipulation of the

triple products ixn these equations yield

A~~f a r- sr-~l-() (47a)

A(r,.) -- aQ(r-r*) s(E)*- (r" +t(W S()(') (47b)

(_,;_.') _( ') (47c)

and

D(E,r') -aQ(r-r')[t)'(.+()5(') I (47d)

thus showing that D(r,r') - -A(M,.") and C(r,r') = (r,r').

We also note that A(r,r') - A(r',r) and B(r,r') 3(r',r).

This latter symmetry property is of considerable importance

for analytic treatments of the iTIE on a sphere, but will be

lost in the numerical scheme for solving the equations.

A numerical implementation of equations 43a and 43b even

with the simplifications of equations 47a - 47d requires that

the sphere be imbedded in some coordinate system. We use

a spherical coordinate system, i.e., an arbitxary position

on the surface of the sphere has cartesian coordinates

"r((,f) " a(cos~sind,sinasinO,cosO) (48)
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We may define

-e, -a r(e, . -cos~cose,-sinocose,sine) (49a)

and

*eT -= " • •-'r(e,j) = (-sino,coso,O) (49b)

obtaining

;(0,*0) -;e, O)x (e,0) - (e,a ) . (cososine, sinosine,cose)
(49c)

as it should.

Inserting equations 48, 49a and 49b into equations
47a - 47d and recalling that the element of area on the surface
of-a sphere is a 2 sinedod% completes the specification of the.
MFIE in a spherical coordinate system.

Our procedure for solving the coupled scalar equations of
the MFIE is to partition the sphere into zones Sj by an

algorithm which has the maximum separation of any two points
of any zone tend to zero as the number of zones tends to
infinity. Cie then approximate both J and Jt by piecewise
constant functions whose discontinuities occur at the zone
boundaries. If we pick a representative point from each zone
and restrict r to this set of points, we obtain, as a matrix
approximation to the MFZE,

I •""
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Sjs s(Ei).Hinc(ri) *. Js(ti]f C(r.i,r') dS'

it(ri).( D(ri,r') 48 (SOb)

This method of solution can be viewed as either a method of

moments solution or as a product integration method. ..

We must, however, consider the nature of the integrands

in equations 50a and 50b. One can show that for an arbitrary

body with everywhere corntinuous, non-zero, local curvature

A, B, C, and D are singular but behave at worst as
a/Ir_'-' as r' approaches r for some finite a. This will be
explicitly shown for the case of a sphere. Since we are

dealing with a two-dimensional integral, these integrands
are still absolutely integrable, however, these singularities
should be treated analytically in order to avoid convergence

problems for numerical integration. Our programs for scat-
..• tering from cylindrical bodies remove this singularity before

attempting the numerical integration; experience indicates

that such treatment greatly improves the accuracy of both phase

calculations and resonant phenomena.

/ I For a sphere, the numerical problem is much simpler. As
-will be shown by the following analysis, a symmetric integration
procedure will permit the singularities to be ignored for

sufficiently large zones. By axpanding the scalar triple
products to second order in e-e, and *-%' we will show, as we

. mentioned earlier, that the above mentioned singularity does
-..-.... ... exist, but numerical techniques ex stwhi!ch- aoid the ieed

to treat the singularity analytically.

We start by expanding Ir-r' 12 in powers of (8-6') and (€-$').

Ir-r'1 2 - Ir'l 2 + In2 - 2(r.£') = 2a2 (l-nn') (51)
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which by equation 49c yields

_ 2a 2a 1-sinesine'(cosocoso,'+sinsin.')-cosecose',

. .2 [sin 2e (-,.')2 + (e-e.)2Jo(8_) 2 + (52)

Similarly, from equations 49a, 49b and 47a we get
-A(r, ' )

, ," sinosin' + cosocoso*aQ

-(cosocos 'cosecos8'+sinosino'cosecose,+sinesine')

S ...... - I((oe '9)2-s in2a( _-.')2]+ ,- '2+(e-e,)21 (53)

while equations 49a, 49b and 47b yield

-S(;, aQ - -a(0--')(e-e')sine +o I(0-o')2+(e-e,)2 (54)

The above analysis has shown that neither A nor 3 behaves
any worse than c/Ir-r'i for some finite a, yet, except at the
poles (B is non-singular if So 0) there exists directions of
approach such that both A and B vary as l/Ir-r£' as r'
approaches r. In addition, we have shown that except at
8-,0 and e,, B is antisymietric in (e-e') and (o-t') and A
is antisymmetric in (8-8') + (0-0') sine. Thus if our
integration scheme is symmetric in (9-8') and (0-o')
. (0-4')aine the singular part effectively vanishes for self
term interactions, i.e., when i-j for equations 50a and
50b. However, neighboring zone interactions do not necessarily
have this antisymmetry property. If wavelength considerations
force the zones to be small the singularities should be treated
analytically.
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Our experience has shown that the zoning criteria for

accurate solution of the MFTZ can be split into wavelength and

geometry considerations. As a general rule, between six and

ten zones per wavelength are needed to fulfill the wavelength

requirements.. For this special case we found that we could

employ even fewer zones for wavelength. For low frequency,

however, geometric considerations dominate the zoning criteria.

The adequacy of the geometric requirements can be ascertained

by examining the-results for magnetostatic excitation. Study-

ing both types of zone requirements, we found that the nearast

neighbor zones are far enough removed to permit simple inte-

gration schemes for evaluating the integrals of equations 50a

and 50b.
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SECTION IV

PRESENTATION OF SPHERE CALCULATIONS

The coordinate system, incident fiel4 description, and
zone numbering scheme for this calculation are depicted in
figure 2. The boundaries for each zone are determined by
allowing 450 increments in * and *. In figures 3 through 11
we present the current density induced by the depicted incident
field as well as by selected local excitation. What is meant
by the local excitation is that a numbered patch is either
considered to be illuminated by the depicted incident field
or is considered to receive no incident illumination. A
discussion of the relevance of this type of local illuminatior
will be deferred to the next section.

The labeling of the tangential components of the induced
current density is as follows

i

Js J• (55)

-t " a (56)

and the quantities plotted are the magnitudes of these compo-
nents dt current density normalized to the magnitude of the
incident magnetic field, S.. The code verification data
presented in these figures comes from two sources. For ka-0,
the magnitude of the magnetostatic solution given by

J5  -(3/2)H 0 cosocose (57)

and

it -(3/2)H 0 sino (53)
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is used to obtain the code verification idata. For k al.1, 1.7,

2.3, 2.9 we use the data presented in figure 66a of reference i.
Specifically, we relate their data, K8 aand Kz, to the code

vorificatizn data using the relations

HO , - I( 59COS)

and

o; i(I ,),in1
as well as makg the identification 71-0 -0. The values of

L I
q and 0 which ýe chosen for the evaluation of equations
57, 58, 59, an 60 for the code verification data correspond to

the angular centers of the patches. ?inally, we note that

we need only present our incident field results for zones

1 through 8 becausb" those results can be translated to the

remaining range of 0 values through the relations

* L~:'i ~3:;:p~coso~

o .0 o 0., c oo p
and

a si no (62)

where * corresponds to a value of * in the data presented
for zones 1 through S.

1. King, R.W.P. and T.T. Wu, The Scattering and Diffraction
of Waves, Harvard University Press, Cambridge,
Massachusetts, 1959.
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jtq )Plant Waye Illumination

4, : Code Verification Data
47

2.0

++

---4j / 0 >Selective Patch E xcitation

.0N,00

7 N a--w 2 .2
/1uO3ýNrlzdCren este nPth1
Seetv Pac-xiaini civdb

FAC~ingall atces bt N.I1

149



/

248-32 E-GP 1-27

//Ho

--- j o Plant a Ilumination

+ : Code Verification Data

2.0 - - 1-/-I
... _..O0 Selective Patch Excitation

1.5

S1.0 +

/I .*- .... /

1 ka. 2 2.9

Figure 4. Normalized Current Densities on Patch 2.
Selective Patch Excitation is Obtained by

*Exciting all Patches but No. 2.
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( Io
>Plant Wave Illumination

- ~~~~'Jt/H1 l0

+ Code Verification Data

2.0

> Selective Patch Excitation

1.0

+ .0-00000 .010
/ +

1 a 2 2.9

Figure 5. Normalized Current Densities on Patch 3.
Selective Patch Excitation is Obtained by

Exciting all Patches but
Nos. 2. 3, 14, 15, 18, '9, 30, 31.
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Plane Wave Illumination

+ : Code Verification Data
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2. ._ i > Selective Patch Excitation
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1 ka- 22.9

Figure 6. Normalized Current Densities on Patch 4.

Selective Patch Excitation is Obtained by

Exciting al'l Patches but
! Ics$. 2, 3, 14, 15, 18, 19, 30, 31.
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2.0. -r 1

1. /1 s > Plane Waveruintn
*~. I ~i~t/HOI

4 : Code Verification Data

1.0 -. Ho > J/ Selective Patch Exc .itation

0
o ka-- Z .

Figure 7.- Normalized Current Densities on PatcA S.
Selective Patch Excitation is Obtained by

Exciting all Patches but No. 1.
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Plane Wave Illumnlfation

+ : Code Verification Data

2.0

1.5

_ 1 _ I/Hot Selective Patch Excitationr

1.0

01 ka• .9

Figure 8. Normalized Cu.rrnt Densities on Patch 6.
Selective Patch Excitation is Obtained by

Exciting all Patches but No. 2.
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-- ~ ~PtI/oI Plane Wave Milumination

+ Code Verification Data J

1.0 -

--~* - 0/

s 1> Selective Patch Excitation

NI'

I. ka- 2.9

Figure 9. Nom~alized Current Densities an Patch 7.
Selective Patch Excitation is Obtained by

Exciting all Patches but
Nos. 2, 3, 14, 15, 18, 19, 30, 31.
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+ Code Verification 0ata
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1 ka -. 22.9
Fl gur'e 10. Normalize Current Densitles onl Patch 8.

Selective Patch Excitation is Obtained byExciting a77 Patches butMOS. 2. 3. 14, 15, 18, 19, 30, 31.
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SECTION V

INTERPRETATION OF SPHERE CALCULATIONS

The basis for our choice of the illuminaticn scheme that
was used to obtain our data is as follows: il, the objective

of each portable simulator was determined only by the incident
field ii) it was easy to numerically implement iii) it bore a
relation to an identifiable class of real sources iv) it had
to succeed as more sources where included. The choice of where
to place the sources is related to the source rigidity issue.
This is readily seen by interpreting the results presented in
figures 3 and 4. In each of these figures, 31 of the 32
patches were illuminated in exactly the same manner that they
would be by the inc'dent plane wave. The only patch that wasn't
excited is the patcn on which we present the data and we see
"that the induced current density is a very poor approximation
to the desired current density which was induced by the inci-
dent plane wave. This implies that if the non-illuminated
patch correspond3 to the shorted POE location, we can obtain
good excitation of that POE only by having a source, of the
type considered in this report, in close proximity.

This result enhances the importance of source rigidity
effects. This is the case because a qualitative examination
of the equations that ra.4sed the issue of source rigidity indi-
cates that the nonrigidity effect becomes increasingly impor-
taint as the source location approaches the POE. Determining
the quantitative effect of source rigidity appears to be an
experimental problem. Figures 7 and 8 show that patches adja-
cent to the nonexcited patch can be excited in the desired
manner for the described 31 out of the 32 patch illumination.

, This result again, is only meaningful if source rigidity is
not found to be a limiting consideration.
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The remaining data appearing in figures 5, 6, 9, and l0

correspond to an illumination scheme in which only 24 of the 32
patches are illuminated. The basis for choosing not to illu-
minate the eight patches is that they correspond to the small-
est values of nxH nC. For this more sparce illumination scheme
we again see that we obtain good rasults at a patch that is
excited and poor results at a patch that is not excited.

Another conclusion worth noting from all the data presented
in figures 3 through 10 is that the plane wave illumiration
results agree reasonably well with the code verification data
for ka as large as 2.3. In many cases the agreement is still
reasonable for ka-2.9. These results indicate that it is
poesible to give up a certain measure of accuracy and have
fewer zones per wavelength than previously thought. For the
data presented, the ratio of the wavelength X to a zone dimen-
sion D is given by X/D-8/ka which is 3.5 if we accepted results
"only up to ka-2.3 and is 2.8 if we accept the results up to
ka-2.9. In either case we see that it is possible to obtain
acceptable results with fewer zones than has in general been
previously thought. This can impact a scheme for determining
a configuration of local sources. The fact that sparce illu-
mination gave good results also provides a rationale for employ-
ing fewer sources. Both of these results can assist the choice
of a configuration to be employed in an experiment.

At this point, it should be noted that no part of our ex-
plicit sphere calculation can be used to infer any experimental
information for very early times since our calculation was not
appropriate for high frequencies. Another limitation of our
calculation should be pointed out. The sphere does not have
a sharp resonance and this could contribute to the fact that
the patch containing the POE required direct excitation in
order for good results to be obtained. For structures having
more pronounced resonances, it is possible that near resonance
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a given POE can be excited ,;ithout having the source in as

close proximity as indicated by our sphere results. Saving

,laborated on the limitations of our sphere calculations we

would like to emphasize that the general theory presented ir.

this work is valid for all frequencies and consequently all

time.

We now address the essential aspects required by our ana-

lysis for each local source. In the absence of any other ob-
jects and sources, their radiated fields should rapidly decay
away f.-om their patch location and at the same time their
radiated fields should vary slowly over their own patch loca-
tion. The simplest source that possesses locality to some
extent, is a half-loop placed above the patch. A simple
calculation shows that the fields decay rapidly for distances
larger than the radius of the loop. Despite its local character
which, to a certain degree, satisfies.one of our conditions for
an allowable source, there are difficulties with the half-loop*
that we will briefly discuss: i) the field due to a half-loop

is slowly varying over a region surrounding the center of the
.loop but the maximum linear dimension of this region is signi-
ficantly smaller than the radius of the loop. To remedy this

we may either consider a half-loop much larger than the patch
or a *solenoid" consisting of many parallel half-loops with
its dimensions not significantly larger than the dimensions of
the patch. In the case of a large half-loop the incident field
will now vary rapidly over other patches, and we have not
assessed the effect of this behavior in our calculations.
However, the numerical solution is only a convenience for
studying selective patch excitation and its inapplicability

does not invalidate the potential use of the half-loop as a
portable simulator. ii) The "solenoid" is an improvement with
regard to the condition of slow variation but it, as well as
the large half-loop, may interact with the sphere substantially
and this could significantly alter the transfer operator
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as explained earlier in connection to non-rigidity of sources.
Despite all the described limitations, both the "solenoid"
and the half-loop have sufficiently desirable features to be
included in an experimental program.

Finally, we discu.-q the Singularity Expansion Method (SEH)
as it relates to alternate simulation, We do this because it
offers a hope of determining the global capabilities of a
configuration of portable sources. We will 'now interpret our
results as related to SEM. An SEM external interaction solution
has the form

J(r,y) =' (•() W

The natural modes- and natural frequencies y c are intrinsic
properties of the metallic body. The coupling coefficients
n= depend on both the coupling vectors (also an intrinsic
property of the body) and the ircident field. Thus, once the
natural modes, the coupling vectors, and the natural frequencies
are known, the responses to various excitations in the SEX
prescrip' ion are obtained by determining the corresponding
coupling coefficients.

Admittedly there is no known recipe for obtaining the
coupling coefficients, in general, but at least we know that
"for the sphere and plane wave illumination the correct coupling
coefficients are class 1 given by

nn ' a(Y) a e Ynn ' Y ) ct 0  : 3 incP ) l -y
""nia [dA n/d, -n, (63)
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where

I inc - i ax'cd
-fm'- i -nm"a -!p

N .( nxJ. d S

ynare the pole locati. ' Cy nnc -natural fzequencies), t 0
is the instant at which the incident wavef~ont hits the sphere,

'ncn~x~cand p stands for polarization, X are the eigen-9p -p- n
values of the Magnetic Yield Integral Operator L, and J are

nina
eigenfunctions of L corresponding to eigenvalue 1-X~

If we were to-compare responses to selective patch excita-
tion and plane wave illumination, we coulý.. assume that the
coupling coefficients fcr patch excitation ai also qiven by
equation 1 and proceed to calculate them. The comparison of
the coupling coefficients for the two excitations would allow
us then to ascertain how well selective patch excitation
simulates plane wave illumination. At this point, however,
caution should be exercised. To clarify the point we are
trying to emphasize, consider the case whereby wIe excite all
patches on the sphere but one, in the manner that was explained.
The MFIE solution shows that the total Current induced on the
sphere is everywhere approximately equal to the current for
plane wave illumination except at the center of thG patch
that was no~t excited. However, if we were to use SEMd for the
comparison of the two types of excitation, the coupling
coefficients for the first few modes would be approximately
eo~ual and this result might lead one to the false conclusion
that the' a..iulation was adequate. Notice, however, that our
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patch zoning results provide no information as to any early-

time SEM results and/or conclusions.
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ELECTROMAGNETIC SURFACE WAVE PROPAGATION
OVER A RECTANGULAR BONDED WIRE MESH

ABSTRACT

The electromagnetic surface wave which can propagate over a rectangular
wire mesh of infinite extent, is considered. The propagation constant is
determined both from a rigorous Floquet formulation and an approximate method
using averaged boundary conditions. The agreement is fairly good for suffi-
ciently small mesh dimensions. The rectangular mesh is found to be highly
anisotropic, and the possibility of an effective anisotropic transfer induc-
tance representation for the mesh is discussed briefly.

/
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INTRODUCTION

Wire mesh screens are often employed in electromagnetic shielding applica-

tione. Plane wave reflection and transmission coefficients are normally

utilized to characterize the shielding effectiveness and, of course, a good

shield should have a low transmission coefficient for a wide range of incidence

angles for any wave polarization. The method of averaged boundary conditions

Ell has been used to analyze the reflecting and transmitting properties of both

square [21 and rectangular £31 meshes. The method gives good results for both

bonded and unbonded junctions, but is restricted to mesh dimensions which are

small compared to a wavelength. General solutions have been given for plane

wave scattering from separated wire grids in free space [4] and for unbonded

wire grids over a half-space [51 and for binded wire grids in free space [6.

These solutions generally involve matrix inversion to solve for the wire

currents, but fortunately, large matrices are not required.

A major diffcrence between a wire mesh and a continuous luetal sheet is the

ability of the wire mesh to support a trapped surface wave. When the source

and observer are located near the mesh, this surface wave is quite important.

For the case of a square bonded mesh, surface wave propagation has been ana-

lyzed [71, and the propagdtion constant of the surface wave is closely related

to the shielding effectiveness of the mesh. Here we extend the previous

analysis to the more general case of a rectangular bonded mesh. For comparison,

the approximate method of averaged boundary conditions is also applied to the

rectangular mesh geometry.

FORM_.ATION

The geometry of the infinite rectangular bonded mesh in free space (permi-

ttivity Co and permeability Po) is illustrated in Fig. 1. Arrays of wires

parallel to the x axis with spacing b and parallel to the y axis with spacing

a are centered in the plar'e z - 0, and perfect contacts are made at the

junctions. The wire radius c is small compared to both the spacings a and b

and the free space wavelength ). Consequently, only the axial wire currents

are important and the usual thin wire approximations are valid.
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P-/ 6

Figure 1. Geometrj for a surface wave propagating on a rectangular
eitr mrdh eiyh bonded junctions. Wire radius equals c.
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tions are valid.

Since the mesh structure has a plane of symmetry at z - 0, the

electromagnetic field can be decomposed into symmetric and antisynmmetric

parts which are uncoupled [8]. The electromagnetic surface wave of

interest here is symmetric, and the rectangular components of the elec-

tric field satisfy the following [7]:

Ex (x,y,z) - Ex(X,y,-z)

and Y Y

EZ(x,y,z) -E Z(X,y,-z). (1)

The analysis closely follows that for the square mesh (7]. Again,

we invoke Floquet's theorem (9) in order to express the relevant electro-

magnetic quantity as an expcnential function multiplied by a function

which is periodic in x and y. Thus, for a surface wave propagating at

an angle * to the negative x &-is, the current on the qth x-directed

wire I and the current on the mth y-directed wire I can be written:
xq ym

xq - exp[y(xcosý + qbsiný)] I Amexp(12itmx/a) (2)
m

and

lym a exp[y(macosO + ysinO)] I B exp(12iqy/b). (3)q q

Here A and B are the unknown Fourier coefficients and y is the
U q

propagation constant which we seek. The m and q summations are

over all integers including zero from .m to 0. Thc calculation of

the fields produced by these currents is straight-forward [5) and will

not be repeated here. The thin wire boundary condition for perfectly

conducting wires is the following: EX(x,o,c) Ey (o,y,c) - 0. This
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condition need only be applied at the m , 0 and q - 0 wires; the

periodic Floquet form of (2) and (3) assures they will be subsequently

satisfied at all wires.

Actually, the expressions for the current in (2) and (3) are identi-

"cal to those in the plane wave scattering case [5] except that y has

replaced ikS where k was the free space wave number (-2ff/)) and

S (-sin8) was the sine of the incidence angle. Thus the previous

equations for A. and Bq [5) can be use with the following modifica-• iq

tions: 1) set the incident fields equal t Izero (source-free problem),

2) set the grid separation h equal to zero (bonded grids in the same

plane), 3) set the wire impedances equal to zero (perfectly conducting

wires), &nd 4) set the half space parameters equal to those of free

space. As a result, equations (24) and (26) in (5] reduce to the follow-

ing:
Aa(k -k x)PM+ ikx X kexp(-rc) 0 , (4)

2 b2a q y
(k 2-k 2 )Qq ikA3q Zikb + LBky y' -. 4

(k 2 -k)Q ikexp(-rc)
B + Ak -0, (5)
q 2ika 2kb mx r

where

( (-2 Tc 
exp(-r o0c)

mb + 60 (6)

V exp(-rc) ÷ p c/b) ] r7))

qoý(2)) I+dq} + (8)rc

2{ a r[1 a

;6
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r (-r) - (k2+ky-k2) (10)mq x y

k - (2vraa/) + kS cosO , Cl1)

and

k a (2wq/b) + kS sine . (12)7

A superscripted prime over the summation sign indicates omission of

the q - 0 (or a - 0) term. S is now defined as y/(ik).

The doubly infinite set of linear equations (4) and (5) for A

and B is numerically inefficient in the present form because Aq •

and 8 decay slowly for large Jul and Jqi. The difficulty arisesq

because the cu. expansions in (2) and (3) are slowly convergent for

the discontinuous current that occurs at the wire Junctions in the

bonded meshes. However, we can circumvent this convergence prob1l by

modifying the current expansions to allow for a jump discontinuity at

the origin. This procedure was adopted previously for square bonded

meshes [6], [7]. As we indicate below, the method requires only slight

modifications for rectangular bonded meshes.

We now rewrite the current expressions in (2) and (3) in the follow-

ing equivalent forms:

I a exp[y(xcoso + qbsint)]

xq

(13)

[ W + A'exp(1irmux/a))• ~x)+ !

AA
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"IZ " exp[y(macos4 + ysin*)]

(14)

S•-l(y) + B B'exp(i27qy/b)]

qb q

* I

where A and B are the modified coefficients. The sawtooth functionm q

f a is chosen to have a jump A at the origin and with a width a; it

is defined by

F ( exp(ii2nx/la) h Aa

• A (x) < x < a_
a 21x<

where

U(x)=

. As before, the superscripted prime 'over the summnation sign indicates

omission of the n - 0 term. The function f Ab (y) is defined in an

exactly analogous manner.

ý7From (2), (3), and (13) -(15), it is clear that Amp A, Bq and

B qare related by

.A.... -A 27rim - .(16)

and
, A(1-6o)B' B - -= B (17)

Bq Bq 27riq

where

"0; m C 0
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Then, by substituting (16) and (17) into (4) and (5), we obtain the

following equivalent set of equations for the modified coefficients:

(k2 -k 2 )P ikA' x +B'kexp(-rc)
M 2ikb 2k q Dqy r

22 , (18)
2kb 27rm 2ka b 212 lmt -o

and
(k'-k2 )Qq y k exp(-rc)

+ Y
q 21ka 2kb x A k

S~(19)

+ y ~ + .... .. + kScos0 -
2ka 2wq 2kb a 2 QZq

where

P exp(-rc) (0
m2- q20

q

, exp(-rWc)
P -P (21)Sm r

mo

,q 'exp(-rc)
l "-mr-' (22)
m

and
exp(-r c)

r "(23)
oq

Again, the superscript prime on the summation indicates omission of

the q - 0 (or m - 0) term. Now, all summations are in a rapidly con-

vergent form.

Since we have introduced an unknown A in the modified current

expansions in (13) and (14), another equation is required to have an

equal number of equations and unknowns (A', B'q, and A). The most con-

venient equation is obtained from charge continuity [6]:
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~(,

- - + -_ I " L yI ---. . (24)
T a xO ax 2L 3  

1 0  ay

By substituting (13) and (14) into (24), we obtain the following auxiliary

condition:

( I + +)+ . A'(imb + Y coso)

(25)

" B I Bq(iq + bb sinO) 0
q

Since the current expansions in (13) and (14) are rapidly convergent,

the doubly infinite set of equations, (18) and (19), can be truncated

with the m ranging from -M to M and q ranging from -Q to Q

where M and Q are small iategers. Thus (18), (19), and (25) yield

a set of T(-2N+2Q+3) linear, homogeneous equations in A', B', and

AM 0

A
N 0

T T AM

(26)
B-Q

•. lcoefficient
B

SQ
matrix

0
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A nontrivial solution to (26) exists only if the determinant, which is

a function of y(-ikS), vanishes. Thus, the mode equation to be solved

for y is written
i•._ x..T x T

coefficient - 0 (27)

matrix

The z dependence of the Floquet harmonics is given by the factor

exp(-r mqz). For sufficiently small ka and kb, there are no grating

lobes (r1 real) and thus there is'no loss mechanism. Consequently,
sq

y is purely imaginary and Ijy > k (or S > 1). Equivalently, the

equations (18), (19), and (20) can be normalized so that all coefficients

are real functions of the real variable S. This real form has been

programmed and (27) has been solved numerically for S by the bisection

method CIO].

AVERAGED BOUNDARY CONDITIONS

"* Plane wave scattering from rectangular meshes has been analyzed by

4 Astrakhan [3) by the method of averaged boundary conditions. For a

bonded rectangular mesh, Astrakhan derives the following expression for

e
the vertically polarized reflection coefficient, R,:

R"- C( - kC[y2cos
2O + (62-"1)sino coso

(28)

- yluin2 0])/I 0

where
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.. C(+k6 1 62 -k 2yty2 ) + kS2 [y2 cos 12 + (6 2-6 1 )sinO coso

(29)

- Y1sin2 o] + k(y 1 -y 2)

a/b S2 cos 20)1 + ab

b/a S2 sin2 o)

2 ="•*2( 1. + b/a

•61 1 a/b 2. . .. a S• siný cosO

b/a S2 sin2 cosý
2 =-2 1 + o

, 13 "L" In b-
\1

2 ff 21rc)
and

.C - )

[Astrakhan's paper contains a misprint, and Y2 sin2 o should be

y Y1 sin2O in his (14)]. The propagation constant (y-ikS) of the

surface wave is obtained from the pole of Re in the S plane.. Thus
et

S • the mode equation for S is

-R9 0 or I - 0. (30)

Since the averaged boundary condition formulation is valid for only

"electrically small meshes and does not include the possibility of

grating lobes, there is no possible loss mechanism for any values of
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the parameters. Thus the solution If (31) for S(ry/ik) is alvays real

and greater than one. For the general case, no analytical solution for

(30) was found, so it was solved numerically by the bisection method

[103.

For the special case of propagation along one of the grids (4 =

0or 900), the expression f or Re !in (28) simplifies considerably.

For *-0% ye have

[ + = (-R S2 )1 (31)
•~ Ie

R I I + (a/b)

Thus the mode equation for * a 0* is
-1 kcz

O a (Re) " 1 + -=- (1-R S2) (32)

By using the quadratic formula, ve find

2R k 2CL2 I + [I + 4k2 cl1(R2-Ri)
.. (33)

100•0o 2R k2cx2

For ýhe special case of small I}ll, (33) reduces to

-S 0.00 - k g2Q2(R 1)2 (34)
/7 .

,
2 11

For * - 90, the results are quite similar.

R.. jl + -"i- (1-R 2S )] (35)

II-
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where

R b/a
2 1 + b/a

Sf~r*~ 2 2 1- +- 2 2 4 2~( R~ 2 ) (36)
2 •1 2

kIrB,900 1 - k1 (37)

For the special case of a square bonded mesh (a-b), the results

become independent of 0 and the mesh can be characterized by an iso-

tropic surface transfer impedance which is inductive [7]. The situation

is much more complicated for the rectangular mesh as can be seen from

the complicated 0 dependence for Re in (28). However, by noting the

simple expressions for R,, for f - 0° and 900 in (31) and (34), we can

postulate an approximate surface transfer impedance representation for

the rectangular mesh which is anisotropic. The anisotropic thin sheet

boundary condition has the form [11], [12]:

H - H --HE (8ly 2y xx (38)

and

Hlx - H2x M HyEy (39)

where the subscript I denotes the region above the mesh and the subscript

2 denotes the region below. In a similar manner to the square mesh case

7 we can infer H from Rj,, ý0 in (31) and Hy from Re _

in (35) with the following result

" r~2 /n

HM- (40)
a koI (1-R 1S 2 )

S~and
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2/In (41)

kcs2 (1-R 2 S2 )

where n = (Uo0 I)•. For angles near grazing, including the surface wave

case (S-l), M and M can be approximated by
y

M 2/n (42)

,x kaI (I-R 1 )

and

M o 2/n (43)
Y ka 2 l-R2)

We can also define an effective transfer inductance from

Mx ,(i,)" (44)
X XY Y

Thus, I and I are given by2 y

and
, ~(1-R2 )•oa

NY- 2 o (46)

For normal incidence (S-O), the surface transfer inductances inferred

from (40) and (41) are

Uob b
In (47)

and

27r 27c148)

In this limiting case of normal incidence (S-0), I. is independent of
x

a and I is independent of b because the two grids are uncoupled.S! Y

Also, we see that (47) and (49) ar"e consistent with the aualysia of a

single grid for normal incidence [13). In the grazing case, the factor

176
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O(-R1 ) in (45) or (1-Rz) in (46) represents the coupling between the

grids.

. NUMERICAL RESULTS

The mode equation (27) was solved numerically by the bisection method

[10), and the convergence was examined by increasing M and Q until

the value of S(-y/ik) did not change significantly. Even for the rec-

tangular mesh (afb), no advantage was found in making M I Q. Also,

for M - Q, it was found that S remained essentially constant beyond

M - Q - 2 (T-il) which is consistent,with previous results [6), [7].

All results shown here are for M - Q - 2, and the required determinant

calculation is fairly rapid for the resultant 11 x 11 matrix. For com-

parison, the approximate results from the method of averaged boundary

conditions have been calculated from (30). These results were checked

further with the analytical solution in (33) for 0 - 0 and in (36)

for *-90%.

In Pigs. 2-4, we illustrate the 0 dependence of S for different

values of a/b. Because of symmetry, only the range of f from 0* to

90° need be shown. As indicated in Fig. 2, the value of S for the

square mesh (i.e. a - b), is nearly independent of 0 for the b/A

values considered. However, when a/b is increased, as seen clearly in

Figs. 2 and 3, the 0 dependence of S becomes significant.

As discussed previously [71, the departure of S from unity is a

"measure c• the degradation of the shielding effectivenss of the mesh

for grazing propagation. Also, as expected, the method of averaged

boundary conditions tends to underestimate S, particularly as b/A

is increased [7].
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FLOQUET

....-. AVE. BOUND. COND.
C/b 0.02
a b

0.02 ---
S-I

0.01- ,- b/X =0.05

Figure 2. Nqoralized pro.agat1ion constant S7y/ik) for a squaremesh as a function of dtirection.
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//

Q25
FLOOUET

- -- - AVE. BOUND. COND.
0.20 c/b a 0.02

o/b a 2.0

0.155 b/X•O.I /

S-I
" OQJO /

/
. /

t -. 0.05 ---

" - ~b/-O.05

/0
00 300 600 900

Figure 3. Normalized propagation constant S(u-Y/ik) for a 2 to 1
mesh as a function of direction.
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0.6 -- '

-- FLOOUET

"---- AVE. BOUND. COND.
c / b a 0.02
a/b a 3.0

0.4 -
•~//

./

S-I 013 b/Xo.I 0.

a2 /

" -f 
b/X s• 005

0 0

06 30 60* 900

/ /

Figure 4. Normalized propagation constant S(,y/ik) fcr
a 3 to I mesa as a function of direction.
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"In some applications, such as in parallel plate waveguide simulators

[143, propagation at - 0° is of particular interest. In Fig. 5, the

frequency dependence for a square mesh and a 3 to 1 mesh is shown. The

. 3to-l ratio .as been used in some EHP simulators (private communication,

C.E. Baum). Note that S is smaller for the 3 to 1 mesh than for the

square mesh in all cases. In the limit a/b = w (no crossed wires)

.... TEM propagation is possible and S goes to one. Analytically, the

.limit of large a/b is difficult to obtain because for sufficiently

Slarge a/X (or b/X), r in (10) is no longer real and grating lobes
mq

can result. The mode equation (27) for S is still valid, but S is

expected to be complex under such conditions. Then, the mesh would act

as a radiator rather than a simple slow-wave structure (i.e. S is real

and greater than one). We have not investigated the grating lobe case

because thp mesh is not an effective shield under such conditions.

Furthermore, the metho4 of averaged boundary conditions does not include

the possibility of grating lobes.

CONCLUDING SARXS

The propagation constant of a sIrface wave propagating along a rec-

tangular mesh in free space has been etermined numerically from a gen-

eral Floquet formulation. For compaiison, an approximate solution, from

the method of averaged boundary conditions, is also presented. The

agreement between the two methods is fairly good for sufficiently small

mesh dimensions. In contrast to the square mesh which has a Zairly

isotropic behavior [7], the rectangular mesh is highly anisotropic.

181
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0.06
FLOOUET

,--, AVE. BOUND. COND.
0.05- c/b •0.02

4.-0

0.04

S-I 0.03-

0.02 /
/

/b/"

0
0 0.05 0O10 0.15

b/X

....iC!ro S. Frequency dependence of propagation constant for
propagation along the x-directed wires.
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A worthwhile extension is the introduction of imperfect conducti-

vity in the wires by use of an Imredance boundary condition at the wire

surface rather than imposing zero tangential electric field. The intro-

duction of a losay half-space [5), [15J would also be useful in modeling

ground screens for antennas. Either of-the above extensions would intro-

duce a loss t echanism and result in a complex propagation constant y.

- Finally, a second mesh (as in a parallel plate waveguide) can be intro-

duced and this configuration has already been treated by the method of

averaged boundary conditions u16).

/ -1
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ELECTROMAGNETIC WAVE PROPAGATION ALONG A
?AIR OF RECTANGULAR BONDED WIRE MESHES

/"

ABSTRACT

• A mode equation is derived for propagation between a pair of rectangular
wire meshes, and numerical results for the propagation constant of the quasi-
TDM mode are presented. An approximate method based on averaged boundary
conditions is found to agree if the mesh dimensions are small and the mesh
separation is large. The field distributed of the quasi-TE! mode is also
examined.
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INTRODUCTION

The electromagnetic properties of wire mesh screens are of interest

in numerous shielding and reflecting applications. The relevant plane

"wave scattering properties have been analyzed both for meshes in free

U space [1l-[4) and over a lossy earth (51-[6]. The closely related problem

of surface wave propagation on a wire mesh has also been analyzed [71-[8].

In thi.7 paper, we consider propagation of electromagnetic waves

between two parallel wire mesh screens. Such a configuration is used in
/

electromagnetic pulse (EMP) parallel plate simulators [91-[101 which are

too large to employ solid metal sheets for the two conducting plates.

Similar structures are also useful in cases where a slow-wave behavior

is desirable (111-[13].

'1 8
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S~ FORMULATIONI

The geometry of a single rectangular bonded mesh in free space

(permittivity e and permeability ijo0) is illustrated in Fig. 1. Arrays

S; of wires parallel to the x axis with spacing b and paratlel to the y axis

wvith spacing a are centered In the plane z - 0, and perfect contacts are

made at the junctions. A second identical mesh is centered in the plane

a - -2d as illustrated in Fig. 2a. The wire radius c is small compared

eto the spacings a and b, the mesh separation 2d, and the free space wave-

length A. Consequently, only the axial wire currents are importa trand

the usual thin wire approximations are valid.

Since the parallel plate mesh structure in Fig. 2a has a plane of

symmetry at z - -d, the electromagnetic field can be decomposed into

symmetric and antisymmetric parts which are uncoupled (14]. The rectan-

gular components of the symnetric part of the electric field satisfy the

following:

E .(xy,z) - Ex(x,y,-z-2d)

and Y (1)

E (xy,r) - -E (x,y,-z-2d)
.5 2

For the symmetric part, it can be shown by image theory that the ýarallel

mesh geometry of Fig. 2a is equivalent to the geometry in Fig. 2b where

a perfect magnetic conductor is inserted at z - -d. Of course the

equivalence is valid only for z > -d.

The rectangular components of the antisymmetric part of the electric

field satisfy a similar relationship:

-1 .

S., ,. /189
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Figure 1. Geometry for a single rectangular wire mesh with bonded
junctions. Wire radius equals c.
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"I 'Mesh

Figure 2a. A pair of identical meshes with separation 2d.

/

•-7r 
/-o/

Mesh" -0 eX

Perfect Magnetic
Conductor

Figure 2b. Equivalent geometry for the sy~mn.tric part of the
"electromagnetic field.

V, z

Mesh214

Perfect Electric

Conductor
/ -Figure 2c. Equivalent geometry for the antisymmetric part of the

( "electromagnetic field.
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Ex(x,y,z ) = -E (x,y,-z-2d)
anid Y 2)

Ez (X,y,Z ) - Ez (x,y,-.z-2d)

In this care, the parallel mesh geometry of Fig. 2a is equivalent (for

z > -d) to the geometry in Fig. 2c where a perfect electric conductor is

inserted at z - -d. This geometry will support a quasi-TEM mode uzhich

has no low frequency cutoff. Since this is the mode of primary interest

in parallel plate simulators [9]-[10] and slow-wave structures (11-[13],

from here on we consider only the geometry in Fig. 2c.

The analysis closely follows that for a single rectangular bonded

mesh in free space [8]. We seek modes which are propagating in x and y

but which decay in z outside the guide (z>O). We invoke Floquet's theorem

[15] in order to express the relevant electromagnetic quantity as an ex-

ponential function multiplied by a function which is periodic in x and

y. Thus for a single mode propagating at an angle 0 to the negative x

axis, the current on the qth x-directed wire I and the current on the
xq

mth y-directed wire I can be written:ym
Ix a exp~~y~x cos€ + qb sin•] • Am exp(i2•mx/a) (3)

and

lym exp[y(ma cosO + y sinO)l 7 B exp(i27qy/b) (4)

A and B are the unknown Fourier coefficients, and y is the propa-
mq

gation constant of the particular mode which we seek. The m and q summa-

tions are ot-er all integers including zero from -. to. -. The calcu-

lation of the fields produced by these currents in the presence of a

perfectly conducting half-space is straightforward (6] and will not be
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repeated here. 7he thin wire boundary condition for perfectly conducting

wires is the foil wing:

E (x'o'c) - K (o,y,c) *0 (5)

Although (5) is ly applied to the m - 0 and q - 0 wires, the pez-

iodic Floquet form of (3) and (4) assures that the boundary condition

will be satisfied at all wires.

The expressions for the current in (3) and (4) are identical to
SI ;

those in the plane wave scattering case [61 except that y has replaced

ikS where k vwa the free space wave number (-270/) and S was the

sine of the incidence angle. Thus the previous equations for A and

B (6) can be used with the following modifications: 1) set the inci-

dent fields equal to zero (source-free problem), 2) set the grid separa-

tion h equal to zero (bonded grids in the same plane), 3) set the wire

impedances equal to zero (perfectly conducting wires), and 4) set the

half-space conductivity equal to infinity. As a result, equations (24)

and (26) in (6] reduce to the following:

(k 2-k2)p ik
A ikb -_a a0ky [. = 0 , (6)

q

+q2  ) ik r Amk exp(-rc) 'epk-2rd) 0
q Zk 2kb M 0 , 7

M

where

F- ~ [~ -:cL-exp(-2rd)] 8

q

Q (-r)- (-'c exp(-2d (9

r (.r)-(k2+ky-k) , (10)
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k - (2flm/a) + kS coO• , (11)

and

k a (2wq/b) + kS sinO . (12)

S is now defined as y/(ik). We note in passing that the case of sylmet-

ric moder. (Fig. 2b) can be obtained from (6)-(9) by simply replacing the

image term, -exp(-2rd), by +exp(-2rd) everywhere that it appears.

The'summations involving exp(-rc) in (8) and (9) are rather slowly

convergent as they stand. More rapidly convergent forms have been derived

previousl.y for P and Q in the free space case (8] and can be applied
Isq

here to yield

brI 2 c~ + exp(-r.oc)

~ j4-tn 1 -exp---) +
mo

(13)

eepp(-rodc
q r

aI -In exp exp(-r. c)

Q -i-tn~lexp(-1I+61

where

- 'r2 lexp(-rc) exp(-2Trlq Ic/b)(

and

1. 1 2'r. f! exp:Lsi - x -7rmc (16)q 2L. a r I*I

The superscripted prime over the summation sign indicates omission of

the q 0 (om a O) term.
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The doubly infinite set of linear equations (6) and (7) for A and

B Is numeri.ally inefficient in the present form because A and Bq U q

decay slowly ior large Ini and Iqi. The difficulty arismes because the

current expansions in (3) and (4) are slowly convergent for the discon-

tinuous current that occurs at the wire junctions in bonded meshes. We

circumvent the convergence problem by modifying the current expansions

to allow for a jump discontinuity at the origin. The procedure is nearly

Identical to that employed for the rectangular bonded mesh in free space

(8] and a few of the details are omitted here. The Fourier coefficients

of the current A and B are first rewritten (81:
U q

, A(1-6 MO)
Am A + 2 noi (17)

and

D B - A - 6 g (18)
q q 27riq

where

1, m 0

01 0, a O

A and B' are modified current coefficients, and A Is an unknowna q

current discontinuity in I at x - 0. By substituting 17) and (18)

into (6) and (7), we obtain the following equivalent set oJ equations

for the modified coefficients:

(k'-k2 )P ik1
A 2 kb + 2ka •B"qqky [P(-rc) -exp(-2rd)
Is 21kb -k

q (19)

+ x a ma 2ka L + 2"S Pnb 0

and
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(k2-k 2)Q ik -c x(2d
Y.l+ -Y A krexp(..c..x..r

q Mek 2kb M ix L "
(20)

(kt-ky2)Qq (1-6 o) + k Y Q +kS cosý 0)
2ka 2itq 2kb a I I lq

vhre

q

"[exP(-ar c) - exp(-2re0 d)) (22)SP' (22)

[Miqc - ex(2d (23)

and
ex"(-r og c) - exp(-2r od1

roq

Main the superscript prime on the summation indicates ovission of the

a - 0 (or 3 - 0) term. All sumnations are now in a rapidly convergent

form.

Since we have introduced an additional unknown A, another equation

is required to have an equal number of equations and unknowns (A', B',

and A). The following equation can be obtained from charge continuity

,j . .. bA; b iklb

.k + + a L A' !AI+ 'kbcoso /

(25)

E - B q + sin) - 0

q

Since the doubly infinite set of equations, (19) and (20), are

rapidly convergent, they can be truncated with a ranging from -M to H and

q ranging from -Q to Q where M and Q are small integers. Thus (19),
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(20), and (25) yield a set of T(-2X + 2Q + 3) linear, homogeneous equa-
, t

tions in A, B, and A:

F A .H 0

A r
0

AM.

coefficient B' _ (26)
-Q

matrix B'
0

I

Q
0

A nontrivial solution to (26) exists only if the determinant, which is a

function of S(-y/ik), vanishes. Thus the mode equation to be solved

for S is

TxT

coefficient - 0 (27)

matrix

For modes which are evanescent in the positive z direction, S is real

and greater than one. For this case equations (19), (20), and (25) can

be normalized so that all coefficients are real functions of the real

variable S. This real form has been programmed, and (27) has been

solved numericilly for S by the bisection method [151.

NUMERICAL RESULTS FOR THE PROPAGATION CONSTANT

Convergence of the mode equation (27) was examined by increasing

N and Q until the value of S (-y/ik) did not change significantly.

The most rapid convergenct was obtained by making M - Q regardless of
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the alb ratio. For the cases considered here, convergence was obtained

for H M Q 2 (T-11) which is consistent with previous results [7]-181.

All results shown here are for M * Q - 2, and the required dratermina~nt

calclation is fairly rapid for the resultant 11 x 11 matrix. For com.-

parison, some results from the method of averaged boundary conditions

[12] have been calculated from (38).

In Fig. 3, we illustrate the * dependence of S for various values

of d/b. The a/b ratio of 3 was chosen because a 3 to I mesh has been

used in some 14P simulators (private communication, C.E. Baum). In all resultr

shown here, the c/b ratio is 10"2, but the results are only weakly depend-

ent on this ratio. Note that S always increases as 0 goes from 0* to 90".

Because of symmetry, only the range of 0 from 0* to 90* need be shown.

As d/b is increased, the results approach a single mesh in free space

(d/b - os). The dashed results obtained by the method of averaged boundary

conditions are in rather poor agreement for d/b l 1.. As the mesh spacing

is increased, the agreement improves and is quite good for an isolated

mesh (d/b - m). The reason for poor agreement for &mall d/b is prob-

ably that the effect of the higher order evanescent terms (Iml and jql

*' ÷ 0) is not accurately included in the method cf averaged boundary con-

ditions.

As discussed prevt.ously [7], the variation of S with frequency

* will result in dispersion when attempting to transmit a pulse. The fre-

S*.i :" quency dependence of S for * - O is shown In Fig. 4 for a/b - l..

For this square mesh case (a/b a 1), the mesh has a nearl.y isotropic

behavior and very little 0 variation occurs. This is in agreement with an

experimental study on a single square mesh by Ulrich and Tacke t161 and a

quasi-static analysis by Andreasen and Tanner [17]. Note that the agreement

with the method of averaged boundary conditions is again poor for

.198
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0.5

d/b I0/b/
Q2I

0.05-

S-I
d/b- 50

0.02-

0.01- / d/bc)

S...a/b a 1.0
0.005- c/b= 0.01

"* Q0021 I
0 0.05 QI 0.15 0.2

b/X
Figure 4. Frequency dependeice of the propagation constant for

propasation slo!ig cho x-directed wires of A sqare mesh.
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d/b - 1 and good for d/b - o. Also, both methods yield a value of S

greater than one for b/X approaching zero unless the mesh is completely

isolated (d/b .

Similar results for a 3 to 1 mesh are shown in Fig. 5. The trends

are similar but the values of S are smaller. This is due to the fact

that there are fewer cross wires to contribute to the slow wave behavior

of the guide. The effect of the cross wires has been described qualitatively

as a periodic loading f16,171.

FIELD DISTRIBUTIONS

The field distribution inside a parallel meih guide is of interest

because a uniform plane wave field is desired in the working volume of

EKP simulators. Also the field outside the meshes is important becaause

of possible interference problems.

The fields of the currents given by (3) and (4) ca-, be derived from

an electric Rert'o vector • which has only x and y components 16]:

" x + 91f , (28)

where

"1•o 1exp(-rjzj) - exp(-r(z+2d))
x T k-b A L ex(rz+d

Is q (29)

exp[i(k xx + k yy))

0i exD -rz ) - e-.p(-r(z+2d))]'0 -rLT•. Eoý Bq r

(30)

exp[ (kxx + ,

no *(Iu/C:) 1 /2
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Figure 5. Frequency dependence of the propagation constant for
propagation along the x-directed wires of asquare mesh.
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and R and • are unit vectors. Note that the fields for the symmetric

modes (Fig. 2b) could be obtained by replacing the image term, -exp(-r(z+2d)),

by +exp(-r(z+2d)) in (29) and (30). Th- electric and magnetic fields

are obtained from the following operations on IT:

.= W-ft + k2fl (31)

H - !!k xf (32)
no

In general, the expressions for E and H obtained by substituting

(28)-(30) into (31) and (32) are rather complicated. However, for suffi-

ciently small ka and kb only the constant terms (m=-.-O) are of sig-

nificance for observation points more than a cell dimension (a or b) from

the mesh. An equivalent interpretation is that we consider tha fields

averaged over one cell, and only the m - q - 0 terms contribute. The con-

stant terms for the Hertz components n and IT arexo yo

-in0  exr jzI) -exp(-r 0(z+d)1
"Ix a 2kb A [0 exp (koxx + k oyY (33)

and

.y -i2- B I xp (-r Bzo ( .. . exp (kpxz + k oyY) (34)
yo 2kb 0 L 1'0 JX Ar. o j 3

where k -'kS cosO, k - kS sine, and r" -k(52-1)1/2ox oy 0

For general angle of propagation 0, all three components of the

electric and magnetic fields can be non-zero. However, for the important

special case of 0 - 0' (propagation along the x-directed wires) the
fields simplify considerably because B and k are zero. Thus nl

0 07 Xo

and IT simplify toyo
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-,nA rexp (41 jx1) -exp(-ro (z + 2d)) epiS) (5
X0 2kb ro xpi~) (5

and

Ityo 0

Thus the constant components of the electric and magnetic fields are

H X0 *R20 mEY -0,

'2  ?211X
EK 2_ + -2Ix , Ez zxO (36)

and

R ik al o
70 no. 0

By substituting (35) into (36). we obtain

E in OA exp(ikSx)E
zo b xon

nA
00

70 y exp(ikSx)Hyo ,

where

Ea (S (241) 1/2 (exp(-r 0 jz) - exp(r 0 (Z+2d))J/2, (37)

Ezon -s[-sgn(z)exp(-r ONl) + exp(-r0 (z+2d)))/2,

Ryn &sgu~z)excp(-r 0 Iz) + exp(-r 0 (z+2d))J/2

and
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Note that the normalized fields E on' Ezon, and Hyon are all real and

dimensionless. This normalization implies that the mesh carries a fixed

current density, A /b.
0

In Figs. 6-8, we illustrate the z dependence of Exon, Ezon, and

B both inside (z<O) and outside (z>O) the guide for various valuesyon

of S. Of course, in a specific example S is determined from the mode

equation (27). Here we choose d/X, - 1, but it would be easy to generate

results for other values of d/,\ from (37). Note that for S - 1, we

have essentially a perfect guide. All fields are zero outside the guide,

and E and H are unity inside. E is zero everywhere.zon yon xon

For the extremely slow wave case of S - 2, the fields are simply

those of a slow surface wave on the mesh and decay rapidly on both sides

of the mesh. For intermediate values of S, the values of the desired

fields, E and Hon, decrease toward the center of the guide (z--d)

and are nonzero outside the guide. Also, E becomes nonzero. Thisxon

6ehavior is consistent with the known fact that the departure of S from

unity is a measure of the shielding degradation for wire meshes (7), (8].

An important design consideration is that 2rod(-2k(S2-l)½d) must be kept

small in order to produce a nearly constant field inside the guide and a

small field outside the guide as desired in E'P simulators.

CONCLUDING REMARKS

A general formulation has been derived for the propagation modes of

a pair of parallel rectangular meshes. The mode equation has been solved

numerically for the propagation constant of the quasi-TEM mode. This is

a slow-wave mode which has no low frequency cutoff, and it is the dominant

mode in parallel mesh EMP simulators. For comparison, results from the

method of averaged boundary conditiong are also present'ed. The agreement
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Figure 6. Distribution of the longitudinal electric field E
for various values of S.
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Figure 7. Distribution of the transverse electric field EI
for various values of S.
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Figure 8. Distribution of the transverse electric field E
for various values of S. Son
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between the two methods is good only wh•en the mesh dimensions are small

and the two meshes are widely separated. When the meshes are rectangular

(a~b), the propagation constant is highly dependent on the propa3ation

direction.

Field distributions are also shown for the quasi-TEM mode. When the

propagation constant is equal to that of free space (perfect meshes), the

interior fields are uniform and transverse, and the exterior fields are

zero. As the propagation constant increases (as for realistic meshes),

the interior fields decrease toward the center of the guide, and the ex-

terior fields become nonzero.

Several extensions to this work are possible. Although the quasi-

TEM 4ode is of most interest, higher order modes are posoible and could

be studied from the general mode equation (27) derived here. The intro-

duction of a lossy half-space (rather than the perfect electric and mag-

netic conductors considered here) would be useful in modeling ground

screens for antennas (51, [6). ton general, these extensions would result

in complex propagation constants and a numerical search in the complex

plare for solution of the mode equation. A final practical problem of

interest is the effect of finite mesh width on the propagation constant

and field distribution of the modes. Two possible approaches are to

model the meshes as sheet impedances [81 or as a finite number of wires

118].
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APPENDIX - AVERAGED BOUNDARY CONDITIONS

The geometry of Fig. 2c has been treatcd by the method of averaged

boundarv conditions 112] which is based on small a/, and b/l. The

resultant mode equation 112] can be written in tLe following form:

min Y((ro/k)[l - exp(-2r"d)) - X211 _ S2(R2 sinEl + R, cos'2)3)

( ([1 - exp(-2rod)] + (ro/k,•x[l - S2 (Rl-R 2 )cos2 o])

+ cos 2${(r 0 /k)El - exp(-2rod)] - X1(l - S2 (R1 cosl* + R2 s2n2 ,)]}

• ([1 - exp(-2rod)] + (r 0 /k)X2 1 - S'(R2 -R 1 )spinl]) - 0 (38)

where

R a/b R b/a
1 + /b , 2 1 •b/a

2b t

and

12 2Wc

This mode equation has been programed and solved numerically for S by

the bisection method 1151.

For the Important special case of * - 0", (38) simplifies to

(Golk)(l - exp(-2r 0 d)1 - XI(1-RI S
1 ) - 0 . (39)

Zn the limit of large d, the exponential term vanishes in (39) for

e(rIo) 0, and we have:

(St-l!I/2 - X (l-RlSI) - 0. (40)
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This is precisely the moe equation for the ,ectangular mesh in free space

which has an explicit solution for S (8].

The other limiting case of (39) is for small o0 d. In this case,

we can reflace exp(-2r d) by 1 - 2rod. With this approximation (39)

can be solved explicitly for S:

1 + 2kd/x 
11/2s -+ 2-kd/•Y-1

Although the simplicity of (41) is attractive, we find that the method of

averaged boundary conditions does not agree well with the rigorous Floquet

analysis for closely spaced meshes (small d). This poor agreement is

illustrated in Figs. 6-8. Consequently, the validity of (41) is question-

able.

I
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SURFACE WAVE PROPAGATION ON A RECTANGULAR LONDED
WIRE MESH LOCATED OVER THE GROUND

ABSTRACT

A mode equation is derived for surface wave propagation along a rectang-
ular bonded wire mesh over a lossy half-space. The mode equation is. solved
numerically for the complex propagation constant of the surface wave. For a
sufficiently small mesh size, the attenuation rate of this surface wave is
considerably less than that of the Zerineck surface for an isolated halt-space
or homogeneous ground.
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IMTRODUCTI ON

Wire mesh screens are employed in numerous shielding and reflecting

applications. The relevant plane wave scattering properties have been

analyzed both for meshes in free space [Kontorovich et aL., 1962; Astrakhan,

1968; HilZ and Wait, 1974; HilZ and Wait, 1976] and over a lossy earth

[Otteni, 1973; Wait and HiZZ, 1976]. The closely related problem of sur-

face vave propagation on a wire mesh in free space has also been analyzed

IRMZZ and wait, 1977a; HiZl and wait, 1977b] and studied experimentally

(UZlrich avd Tackc;, 1973].

215
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Bere xvo extend our analysis to the case where the rectangular mosh is

located at an arbitrary height above a conductin, half space. When the

height is small, this configuration can be considered as a model to study

surface wave propagation over a ground screen. The surface wave contribu-

tion to the total field is expected to be significant when the source and

observer are located near the ground screen. For example, a conical mono-

pole source over a ground screen has been usee to illuminate test objec~ts.

(also located above the groo~nd screen) with an electromagnetic pulse tYeh-rer

and Bawi, 1975).

Our objective here is to calculate the propagation constant of the

surface wave. Due to the lossy earth, ta e wave suffers pttenuation and-the

propagation constant becomes com.nd. s w o

FORMULATION

The geometry of a rectangular banded mesh located at a heig ht d above

a conducting half-space is illustrated in Figure 1. Arrays of inienlc _al

perfectly conducting wires parallel to the x axis with spacing b and parallel

to the y axis with spacing a are contained in the plane z pu0. This con-

figuration is called a bonded rectangular mesh because the contact between

the wire junction is bonded and the interwire spacings a and b are not equal

in general. Furthermore, the wire radius c is small compared to the spacings

a and b, the mesh height d, and the free space wavelength X. Consequently,

only the axial wire currents are important, and the usual thin wire approxi-

mations are valid.

The region z > - d, extdraal to the wires, is free space with per-

mitrivity C and permeability pwir The region z < - d Is hoendo eneous

ith permittivity ch conductivity a and free space perme queiility v

216
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z

l ~Wire Radius CN

• y

z /-Lo,E•o

-4 0
aird

_IP'ground ' -

P-0o, 0g, Eg
Figure 1. A bonded rectangular wire mesh ovar a conducting

half-space (perspective and side view).
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In the following formulation, the mesh is located in free space which mezns

that 4 is ponitive. However, a similar formulation is possible for a buried

mesh (d<O).

The formulation closely follows that for a rectangular bonded mesh in

free space [liZ and Wait, 1977b). Thus, we seek modes which are propaga-

ting in x aW y but which decay above the mesh (z>O) and in the earth

(z<-d). We invoke Floquet's theorem [CoZZin, 1960J in order to express the

relevant electromagnetic quantity as an exponential function multiplied by

a function which is periodic in x and y. Thus, for a single mode propiga-

ting at an angle * to the negative x axis, the current on the qth x-dir-

ected wire I and the current on the mth y-directed wire I can beXq ym
written:

I ,, exp[y(x cosO + qb sinO)J • Amexp(127nlx/a) (1)

and

Iym - expCy(ma coso + y sino)] R q exp(i2wqy/b) (2)
q

where a time factor exp(iwt) is assumed. Here A and B are the un-S q

known Fourier coefficients, and y is the propagation c, .,stant of the parti-

cular mode which we seek. The a and q summations are over all integers

including zero from -- to w.

The calculation of the fields produced by the currents given by (1)

and (2) in the presence of a conducting half-space is straightforward

(Wait and Eil, 19761. For the present analysis, we employ the following

thin wire boundary condition for the assumed verfectly conducting wires:

E x(x,oc) Ey (y,o'c) 0 0. (3)
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Although (3) is only applied to the mi 0 and q = 0 wires, the periodic

Fl~quet form of (1) and (2) assures that the boundary condition will be

satisfied at all wires.

Expressions (1) and (2) for the current are identical to those in the

plane wave scattering case except that y has replaced ikS where k is

the free space wave number (-21T/X) and S is the sine of the incidence

angle. Thus the previous equations for A and B can be used with the

followi g modifications: 1) set the incident fields equal to zero (source-

frse problem), 2) set the grid separation h equal to zero (bonded grids in

the same 'plane), and 3) set the wire impedance equal to zero perfectly con-

dutcting wires. As a result, equations (.24) and (26) from the plane wave

case (Wait nd HiZZ, 19761 reduce to the following:

* k
(k2.kx2)Pm ik ~ y1xP~c (r ikrnrs

A - k2ikb + B I Bqkyr- xp(-rc) + rmq + k k T
U 2ka q x y (4)

exp(-2rd)] 0 ,

(k+-k 2)Q ik Akr- [exp(-rc) + (Rm iknrsy
aq ika +y x q kx

(5)
exp(-2rd)] - 0 ,

where

P- [ (exp(-rc) + R exp(-2rd)]r 1l_ (6)
mMq q

Q q [exp(-rc) rq exp(-2rd)]r- 1  (7)

• q( -r) = 2 2 1/2
r (-r) - (kx+ky-k) , (8)
eq X y
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k ,- (2nm/a) + kS coso , (9)

k - (2nq/b) + kS sinO , (10)
and n (Uo/Co)l/2. S, being a complex quantity, is now defined as y/(ik).

The quantities Rmq, rmq, Smq and %mq are functions of the half-

space parameters o and

k2(r+?K x)(r-F rKx) + (kxky ) 2 _(lK x)2

R*X r x X y x
2q 2

"k2(r+rK )(r+cPK) + (k k ) (1-K )2 ()

kr+:%r-!r~y, + (k2k) 2 (_-)2(k "-(r+r Y )(r+rc r ) . (kxk) (1-K,) (12)

S -21kxkyr (i-Kx)/n"mq 22 )2 (13)

-2ik k r(.-K )/n
S - Y

"% q k2 (r+rK )(r+rcryK) - (kx k y) 2 (-K y)2 (14)

where

K -(k 
2 A2)/ (k2 --k2)

x K g K

K (k2 A 2 )/(k 2 -k2)

P (k2+k2_ k2) 1 /2

xy

C• (a$+iWE )l(iW )

For two special cases, we note that (11) - (14) simplify considerably.
When the half space vanishes (i.e. Cr a 1), we have Rq a rq Smq a mq 0mq mq mq mq
which is the free space result [HilZ and Wait, 1977b]. When the half space
is perfectly conduccing (i.e. a -0 ), we have Rq r mq and
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Smq smq . By image theory, this is the result for a pair of identical

meshes [HiZZ, 1977].

The summations involving exp(-rc) in (6) and (7) are slowly convergent

as they stand. More rapidly convergent forms have been derived for P and

q in the free space case [HiZZ and Wait, 1977b] and they can be applied

here to yield

" ab f- tnEl - exp(-21rc/b)] + A I
(15)

"+ w.(-r )r-o + X e0xp(-2rd)r-1

q

Q " -Ln" l - exp(-2irc/a)] +

(16)

"+ exp(-r oc)r 1 + r mqexp(-2rd)r'

where

A. I [2i ept rc) "exp(-21iq~c/b) (i7)q 2i
and

'q [ 2 [r mm(-re) exp(.2nmjc/) (18)2 r I -

The superscripted prime over the st-atln sign indicates omission of the

0q O (orm =0) term.

The doubly infinite set of linear equations (4) and (5) for A and

B is numerically inefficient in the present form because A and Bq a q

decay slowly for large Jml and lql. The difficulty arises because the

current expansions (1) and. (2) are slowly convergent for the discontinuous

current that occurs at the wire junctions in bonded meshes. We can circum-

vent the convergence problem by modifying the current expansions to allow

for a jump discontinuity at the origin. The procedure is nearly identical
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to that employed f or the rectangular bonded mesh In free space [HiZZ and

M2it, 1977b). Thus the Fourier coefficients of the current A and B

are rewritten

A6-A + A(1-62)/(2nim) (19)

and

B q B q- a(l-d5 )(27riq) (20)

where

1, a -0

0

A ,and B are modified current coefficients, and A is an unknown

a q

current discontinuity in I X at x -0. By substituting (19) and (20)

into (4) and (5), we obtain the following equivalent set of linear equations

for the modified coefficients:

a 2ikb +- Bqkyr'Cexp(-rc)

+ + (-q)/ exp(-2rd)J (21)

+ (k 2-k")P 3  (8 ~-1) 20x [ kS sin4 P. 0

(k1-k2)Q ik
B y q + d en o L a A Is an up(rc)
q 21ka k mx

Scurrnt dscon (nuit inIoa .B usiuig(9 n (22)

%.2-0) (1-6 ) k r 'd kd oost ns
+ 7 go + Y n[Q -r 121)

2kb 22rq 2v a'lq JJ
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where
/" iknrs\

Flm - [ (exp(-rc) + + exp(-2rd)]/(qr) (23)q 
7/q k /

P, a b - in[I - exp(-21rc/b)) + (4(24)

+ (r rq + .knram, ) exp(-2rd)r- ,
q kx ky

kLexp(-rc) + i.rs mg exp(-2rd)J/(mr) (25)
SQlq =% -' kep-r) x kxky

and

SQq " - in[1 - exp(-2ffc/a)) + 6q)

(26)

+ R mq- kxk exp(-2rd)T-

Again the superscipt prime on the summation indicates omission of the

q - 0 (or a - 0) term. Note that by setting A equal to zero in (21)

and (22), we could retrieve (4) and (5).

Since we have introduced an additional unknovn A, another equation

is required to have an equal number of equations and unknowns (A', B,

and A). The following equation can be obtained from charge continuity

at the junctions I[.1Z• and Wait, 1977b]:

A' (inb ikSb

(27)

B iq + Ak ine) 0
q21r
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Since the doubly infinite set of equations, (21) and (22), are rapidly

convergent, they can be truncated with m ranging from -M to M and q ranging

from -Q to Q where M and Q are small integers. Thus (21),'(22), and (27)
I I

yield a set of T(-2N+2Q43) linear, homogeneous equations in A , Bq,' and

A:

04
AM

T X0

o1
TXT"-

coefficient 8Q (28)
Utt I

A 0

A nontrivial solution to (26) exists only if the determinant, which is a

function of S(-Y/ik), vanishes. Thus the mode equation to be solved for

S is:

+ ~TXT.

coefficient 0 (29)

matrix

The above equation has been pro~rammed and solved numerically for S by

Nevtonos method.
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NUMERICAL RESULTS

Convergence of the mode equation (29) was examined by increasing H

and Q until the value of S(-y/ik) did not zhange significantly. The

most rapid convergence -as obtained by making M - Q for a/b ratios from

1 to 3. For the cases considered here, convergence was obtained for H - Q

- 2 (T-1I), and all results shown here were computed for M - Q - 2. The

required determinant calculation is fairly rapid for the resultant 11 x 11

matrix. The matrix fill time dominates the determinant calculation time

for such cases.

In Fig. 2, we illustrate the * dependence of Re(S) for several a/b

ratios. Note that for the mesh in free space, Re(S) is always greater

than one (slow wave). For the half space environment where S is complex,

this is not always so. The relative dielectric constant cr a 10 - il.8

would correspond to a ground conductivity a - 10 2mho/m and relativeS

permittivity c I/A - 10 at a frequency of 100 MHz. The lack of 0

dependence for a/b 1 1 is to be expected for square bonded meshes which

are electrically mall (e.g. b/A - 0.05). When a preferred direction of

propagation exists, a rectangular mesh (i.e. where a 0 b) can be useful,

and a 3 to I mesh has been used in some WP simulator applications [Bau,

1972; .eabser and Baft, 1975). Note that Re(S) is closer to unity at

* 0* for the rectangular mesh, but that the 0 dependence is quite strong.
value of c/b 02has been used in all calculations shown here, but

the results are only weakly dependent on the wire radius c.

For the same parameters, in Fig. 3 we illustrate the * dependence of

Ia(S) for three s/b ratios. The actual attenuation rate a is determined

from S by
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MESH OVER GROUND

MESH IN FREE-SPACE

1.02

-%.. 00. a /I.... .

I

I!
a/ba

j ,.00- a/b=2

a9 I• I" t

00 ' 30'0 60090

Figure 2. Real part of the normalized propagation constant S
as a function of propigation direction *.
Parameters: c/b -Z1C'z, d/b - 10-1, b/X - 0.05,
Cr 10 i1.8.
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5xlO02

2xO-2

2x10-2
Ground ol

5x103

o/bb=l
E-

a/bob

/a/b-3
-x14

00 300 600 900

Figure 3." Imaginary part of the normalized propagation constant

S as a funct'on of direction 0.
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a Re(y) = -k Im(S) (nepers/m) . (30)

No results are shown for the free space comparison because the free space

mesh is lossless (S real). As expectedi the zquare mesh is again isotropic,

and the rectangular mesh is highly anisotropic. Also, the attenuation rate

is lowest when propagating in the direction of the more closely spaced wires

(4-0*). For comparison, the result for the Zenneck surface wave of the

isolate4 half space is shown. It is computed from [Wait, 1962a; Banos,

1966):

S - cr(C r +1)]1/2 (31)

For' r a 10 -i.8, S is approximately 0.9547 - i0.0076. Note the large

reduction in attenuation at - 0* due to the mesh.

In Table 1, we illustrate the dependence of S on b/X and d/b for

* 0*. As before, cr = 10 - il.8 and c/b - 10-2. Note that the attenq-

ation rate decreases as d/b is increased from 0.1 to 0.3. This is expected

because ground screen performance generally improves as the screen is slightly

elevated [Wait, 1962b). The results for d/b = m are those of the mesh in

free space (H[.ZZ a'd Wai2t, 1977b]. The variation of S is not necessarily

monotonic as d/b is increased from 0.1 to *. Also note the large increase

in both the real and imaginary parts of S as b/X is increased from 0.05

... . to 0.1, particularly for the square mesh.

CONCLUDING REMARKS

A general mode equation has been derived for propagation along a bonded

rectangular mesh over a lossy earth. The mode equation has been solved

numerically for the dominant surface wave mode. This mode sufferr attenu-

ation due to the losses in the earth, and for most cases is a slow wave
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TABLE I

Normalized Complex Propagation Constant, S (cr 1 0 - 11.8, c/b - 0-2,

I-

a/b blX d/b S

1.0 0.05 0.1 1.002485 - 10.001396
" " 0.3 1.002247 - 10.001161
"of If 1.0 1.002290 - 10.001200

"""_100.0 1.010513 - 10.000002

" __ 1.010515 - 10.0
""0.1 0.1 1.510056 - 10.518362

_____ _0.3 1.278652 - 10.338335
If of 1.0 1.114107 - 10.150493

"""_100.0 1.038768 - 10.0
"It to c1.038768 - 10.0

3.0 0.05 0.1 1.001114 - 10.000399

"0.3 1.000731 - 10.000197
""t 1.0 1.000673 - 10.000170
t is "100.0 1.002683 - 10.000026
"to, itgo 1.002731 - 10.0
"to 0.1 0.i 1.003560 - 10.003103
""to I 0.3 1.002708 - 10.001680

"""_1.0 1.002608 - 10.001471
""f 100.0 1.010828 - 10.0
"I "I 1.010828 - 10.0
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(i.e. Re(S) > 1). This is in contrast to the fast surface wave for the

lossy earth without a ground screen. For a stfliciently small mesh size,

the attenuation rate of the surface have is considerably less than for the

isolated half-space. However, for mesh sizes of O.lX or greater, the

attenuaiLon reduction is not significant and, in fact, the attenuation rate

can even increase. For the rectangular mesh (a~b), the propagation con-

stant is highly dependent on the direction of propagation, and minimum

attenuation is obtained for propagation along the more closely spaced wires.

Several extensions to this work would seem worthwhile. The approxi-

mate method of averaged boundary conditions which has-been applied to single

meshes [Astrakhan, 1968] and a pair of meshes [Konterovich et aZ., 1964]

in free space could be extended to the lossy half-space geometry. Casey

[1976] has recently applied this method to a square bonded mesh located

at an air-dielectric interface. Since the unbonded mesh has superior re-

flecting properties [Kontorovich at aZ., 1962; HiZZ and Wait, 1976], it

could also be analyzed for surface wave propagation in the presence of a

lossy half-space. Finally a thorough numerical search for all the modes

could be made for the mesh-earth structure. We have examined the expected

surface wave mode, but others may be possible. Solution of a source prob-

lea (such as vertical dipole excitation) would be useful in assessing the

various po.s (surface wave, etc.) and branch cut (continuous spectrum) con-

tributions to the total field.
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EQUIVALENT ELECTROMAGNETIC PROPERTIES
OF A CONCENTRIC WIRE CAGE

AS COMPARZ-D TO A CIRCULAR CYLINDER

ABSTRACT

The electromagnetic equivalence of an infinitely long loaded wire-cage
structure and loaded hollow cylindrical geometry is established based on the
same radiated fields under identical conditions. Analysis of the canonical
infinitely long loaded wire geometries are given by treatment as boundary-
value antenna problems. An expression for the equivalent radius of the wire
cage and an equivalent impedance-loading function are obtained, including
frequency dependence.
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I. INTRODUCTION

The electromagnetic equivalence of radiating objects has

been a subject of study for a long time by many investigators. 1-3

This yields a simple equivalence corresponding to a complex radi-

ating structure based on a predefined electromagnetic equivalence

criterion. The question of equivalence criterion may be define(

according to the same total radiated fields, or the same total

current induced, or even the same effective impedance(s) of the

geometries under equivalence study. There does not appear as yet

to be a unique equivalence criterion one may establish; it entirely

depends on the specific need and its application. In this paper,

the field radiated by the structure is taken as the basis for com-

parison and for establishing electromagnetic equivalence.

Even though the question of electromagnetic equivalence is

basic in nature, the motivation for the pre3ent investigation is
4

to come up with suitable modeling for hybrid EMP simulators. In

figures 1.1 and 1.2 are shown examples of wire cage hybrid simula-

tors with complex bicone feed structures. 5,6 A straightforward

analysis in a given frequency spectrum is quite complicated. Hence

a systematic modeling of the conical feed and generator, wire cage

hybrid simulator, and the transition region between the conical

feed and the simulator is required. 7

This note is primarily concerned with the development of a

theory for equivalent electromagnetic properties of a wire cage as

compared.to a hollow conducting cylinder. Wire cage structures

have been extensively used in the design of hybrid simulators 5 ' 6

from the practical standpoint of lower structural weight, lover

wind resistance, ease of construction and erection at the experi-

mental sites. The exact analysis of the wire cage hybrid simula-

tor is very complicated; one has to suitably model it to simplify

the analysis. The reader should note that the wire cage by itself

is inadequate to model a hybrid simulator since certain parts of

it involve conducting conical, cylindrical, and other transition

sections which are physically quite different from a wire cage

(and desirably so, for improved performance).
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The subject of electromagnetic equivalences as applied to

wire cage models is previously studied by Schelkunoff,1 King,2

and also recently by Baum,3 to obtain an equivalent radius. The

results obtained1 -3 are in principle applicable to only perfectly

conducting wire cages in the limit as frequency approaches zero.

In one study a cage consisting of conical wires equally spaced

over the surface of a bicone is studied, and compared with respect

to a solid cone of same characteristic impedance so that there is

only a transmission line mode excited. In the limit as the cone

angle becomes small, the result of the effective radius of the

cage is the same as the one obtained in reference 3 which is based

on conformal transformation; an equivalence between a single

charged conductor and a number of equally spaced concentric charged

conductors is thereby derived in the static case. A different

approach is studied in reference 2 wherein a cage antenna consist-

ing of closely spaced parallel and identical conductors placed

around a circle is compared with respect to a sirgle conductor

antenna, so that the total axial assumed current distribution is

approximately the same in both cases.

This note considers various, but compnratively more accurate,

alternative analyses of the impedance lo'aded, infinitely long

cylindrical models which can be used as substitutes to the complex

wire cage structure having the same electromagnetic field proper-

ties. The question of electromagnetic equivalence of wire cages

(both circular cylindrical and circular conical) used in hybrid

(and other) simulators as compared to a cylindrical solid wire, a

cylindrical cage of strips, or a hollow circular cylinder with

complex impedance loading functions is investigated in a larger

perspective, based on the detailed analysis of the infinitely

long canonical geometries with uniformly loaded impedance func-

tions, treated as boundary value problems. These in general fit

into the category of boundary connection supermatrices 8 for the

radiated fields.
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II. ANNALYSIS OF INFINITELY LOIG CANONICAL THIN WIRE ANTENNA
GEOMETRIES

An analysis for electroma netic radiation by two-dimensional

uniformly loaded structures is reated as a boundary value problem.

The following antenna geometrie are considered below:

1. Infinitely long load d wire antenna (thin)

2. Infinitely long loadid wire cage antenna and its

special case of an i finitely long loaded circular
cylindrical wire cag; antenna

Infinitely long oad d hollow circular cylindrical

ant enn a la
Integral expressions are ¶erived for the current induced and

the corresponding fields radiated for the above canonical problems.

Using saddle point integration, the electric and the magnetic far

fields and the asymptotic solution for the induced current are

evaluated. I

A. Infinitely Long Loaded Wire Antenna

SAn infinitely long thin wire is oriented along the z

axis in a free space isotropic homogeneous medium. The radius of

the cross section of the wire is b and it is excited by a source

generator of voltage V(s) acrcss a gap of width 2d centered at

z - O1as shown in figure 2.1. The electric and the magnetic fields

radiated into the surrounding medium are calculated from the

induced electric current I(z,s) on the wire, which can be obtained
9by solving the boundary value problem and enforcing the impedance

boundary condition on the surface of the wire. Due to the symmetry

of the problem and nature of excitation, the radiated electric field

i(m,z,s) and magnetic field A('iz,s) are obtained by

Y(T,z,s)

s - I I • ez di (2.1)

239



EMP 1-27 252-7

2dL_

XZTO'Z
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Figure 2.1. Infinitely Long Thin Solid Wire Antenna
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where i(Q,C,s) and h(T,C,s) are the spectral distributions of the

corresponding electric and magnetic fields.
In the present analysis, the following Laplace-transform

definitions (two-sided) are followed for the time variable t and

the space coordinate variable z,

Laplace(t,z)
TransformFz(t) Pl(s) . . . .

F 3 (t,z) F3(so

Fl(S) Fi(t) est dt (2.2a)

F (C) F2 (z) e-z dz (2.2b)

which have the corresponding inverse Laplace transforms

Fl(t) = • f• Fl(s) est ds (2.2c)

F2 (Z)m. 1J F2 (C) e•z dc (2.2d)

where C and C are the contours of integration in the s- a
---- ------ complex planes as -shown n fi u e- 2. . . . .... ....

At any point P, there exists only the z-component of

the magnetic ve..-tor potential 9,11

(z's) - J F(bC,s) Ko(UW) e" dC (2.3)

from which the radiated electric and the magnetic fields can be

obtained as

241
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I
(i',z,S) -A-(--- 2- s D2 1 tjATi,z,s) (2.4a)

2 2z z gYa iSa,

t HQzs) - A ,z,s) (2.4b)

In the expression (2.3),

U -y [2 2 21t (2.5a)

and the cylindrical radial coordinate

X [x 2 + y 2 (2.5b)

KO is the modified Bessel function of the second kind, zero order,

and the propagation constant is

= [sP(a + s•)]- (2.5c)

- JK (2.5d)

where c, e, and a are the permeability, permittivity, and the con-! ductivity of the homogeneous medium. The spectral term F(b,C,s)

in the expression (2.3), is the term proportional to the Laplace
transform of the induced electric current I(z,s) on the infinitely
long wire. In the above spectral representation, an eSt+CZ field
variation is assumed, s being the two-sided Laplace transform
variable. The infinitely long wire is sufficiently thin to satisfy

lybi << 1 (2.6)

so that no internal modes are excited.
The spectral term P(b,c,s) is to be determined based on

enforcing the following impedance boundary relationship for the
tangential total electric field on the surface of the wire. The
infinitely long wire is excited by an ideal source generator of

243
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voltage V(s) across a gap of width 2d. Within the gap the z com-

ponent of the electric field is specified to have the variation

-V(s)/2d. Hence, on the surface of the infinitely long thin wire,

the induced electric current I(b,z,s) and the electric field

E (b,z,s) should satisfy, 9

z

E~ (b,zrs) = -~~)P()+ 21(s) I(b,z,s) (2.7)

where

Pd(z) 1, IzI < d

Sj -IzI > d

"In the above expression, Z'(s) is the series axial impedance per

unit length of the infinitely long loaded wire. In this analysis,

the impedance function Zw(s) has the definition of impedance per

unit length which is the ratio of the tangential electric field to

the total current aleng the axial direction. This impedance func-
tion includes a contribution due to the lossy characteristics of

the wire in addition to the externally introduced loading terms.
Depending on the cross section of the wire geometry, complex s

dependence may arise at very high frequencies. In Appendix A, the
series impedance Zw(s) per unit length is discussed for certain

geometries. However, with large external loading, the contribu-
tion due to lossy material of the wire can be ignored for all

practical purposes.

In terms of the transformed spectral quantities, the

boundary relationship (2.7) becomes, with the following source

' function expansion, 9

s (Z• ) pdz= V_(s G(C) eZ dý (2.8a)

21rj C

(n) (=hd) (2.8b)
(ed)

- 1, as I~dI - 0
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and hence,

Ez(b,ý,s) -V(s) G(ý) + Z,(s) I(b,c,s) (2.9)
w

According to the expressions (2.1), (2.2d), (2.3), and

(2.4a), the z component of the spectral electric field is1i -
s 2-E•i(',C.s) - - - K U2 0 (u') F(b,c,s) (2.10)

The induced electric current along the infinitely long wire is
obtained as a line integral of the 0 component of the magnetic

field (2. 4b) evaluated just outside the surface of the infinitely

long wire,

21r 2i [ aiz(Yzs)
I(b,z,s) = - dO (2.11)*= i V=b

P The electric current has no *-angular variation, and using the
expressions (2.1), (2.2d), (2.3), and (2.4b), the spectral distri-1! bution of the electric current is

I(b,ý,s) - 27buK,(ub) F(b,C,s) (2.12)

where K1 is the modified Bessel function of second kind, first

order. As pointed out earlier, the term F(b,C,s) is proportional
t! to the transform of the electric current.

On substituting the exrressions (2.10) and (2.12) into

the impedance boundary relationship (2.9), the expression for the

spectral term F(b,c,s) is obtained as,

2 G(ý)
F(b,Cs) = 1(s) Y-- s (2.13a)

S ufl(;s)

where .'(s)

B(i,s) uKo (ub) + 2irbyKl(ub) -0--- (2.13b)
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and the characteristic impedance of the medium is

Zo- [ +sc (2.13c)

Hence from the expressions (2.2d), (2.12), and (2.13a), the total

ind¶-ed electric current on the 'infinitely long loaded wire antenna

has the distribution,

I(zs) - V(s)yb G(f ) er(b de (2.14)
jzo0 C D(z,s)

In fact one can verify the expression (2.14) "or the

special case of a perfectly conducting, Zw(s) = 0, solid cylindri-

cal antenna. Assuming the source to be an ideal slice generator,

the electric current on a thin solid perfectly conducting infinitely

long antenna12 ,13 is given by,

iPC(z,s) = (zsl •(S)=o

Klyb r (ub) e z dý (2.15)
JZo fc •

Since F(b,C,s) is known from the expression (2.13a),

the z component of the magnetic vector potential defined in (1.3)

takes the form

Az(7,z,s) = 2 G(C) o eKz dt (2.16)zf C u LI( ; s )

It is now possible to calculate the electric and the magnetic

fields as defined in the expressions (2.1) and (2.4), and using

the expression (2.13a), we have the spectral fields
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(o'i(,• ,s) (2.17a)

where [M] is a vector for the infinitely long thin wire antenna

and represents the spectral distribution of the' radiated fields,

E"J -[:](2. 17b)

where the elements of the above vector are,

UKo(UV)V' '=u u)(2.17c)

i1- =V(s) 2(c) - (2.17d)
D(c,s)

Due to the symmetry of the structure and its excitation, the fields
are independent of 0-angular variations. The general solution to

the radiated fields (2.1) is difficult by direct analytical methods,
where the integration is to be performed along the contour C in
the complex C-plane, figure 2.2.

If the far-field distribution is the quantity of inter-

est, it is possible to obtain explicit expressions for the various

field comp-nents defined in (2.1). A classical approach is based

on the saddle point integration,13 and using this technique, the
radiated far fields of the infinitely long perfectly conducting
wire antenna are obtain in reference 14, and are extended to
infinitely long loaded wire antenna structures conveniently; a

summary of the procedure of the saddle point integration method to'

obtain far field distribution of the H (Q,z,s) as 7 ÷ is given in

Appendix B. Hence asymptotically as V 7 =, the integral expression

(2.1) reduces to the following forms:
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S(r,cis) • _ s cosa e-rE z r (2.18a)
L 1(y,ez) r

Zo• ( r~~ s) • •1 e-yr

Z H((rVis) V(s) 1 e (2.18b)0 2 Ll(Y') r

where a - 90 - 8 and yL l (y,a) is Lefined in Appendix B and repeated

below for future usage

Ll (y,a) - cos(a) Ko(yb cost) + hl(s) Kl(yb cosa) (2.18c)

hi(s) - 21rb Z (2.18d)'

In the expressions (2.18), r and 0 - 90 - c are the spherical coor-

dinate variables, while c is the angle measured from z = 0 plane,

figure B-i.

In a similar way, it is possible to obtain an asymptotic

solution for the total axial current !(z,s) as given in the expres-

sion (2.14) or one can evaluate H 0(I,z,s) on the surface of the

infinitely long wire in Ihe limit as z - 14

I(s) '27bH. z.s)i as z - 0 (2.19a)I 17=b+

To evaluate H ,z,s) on the surface of the wire structure T = b

for large values of z, it is necessary to restrict the radial dis-

tance r and angle a so that b = r cos(Ca), and we have z = r sin(a).

For a = w/2, z a r so that in (2.18c) the arguments of the Bessel
function can be replaced by yb cos(a) = 2b2/z. Hence the expres-

sion (2.19a) yields

I(s) % "V(s e-T2 as z 00
o 0 (yb /z) + [h 1 (s)z/b] K1 (yb2/z) (2.19b)
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As z takes on larger values, yb 2 /z is very small. The modified

Bessel functions can be replaced by their small argument approxi-

mation, 15

K0 (z) -Inrz (2.19c)

1C(z) (2.19d)

r = 0.5772... (2.19e)

and (2.19b) simplifies to

1(s) e-se

o -Zn(ryb /2z) + [hl(s)y/b](z/yb)

=•V~s 2 e-Yz2(.1f

Zo -In (ryb 2 /2z) + 2n[ Z(s)/Zo](z/yb)

as Z

B. Numerical Results: Far Field

The infinitely long thin-wire loaded antenna has been
analyzed in the previous section, and the integral expressions for
the induced electric current, and the radiated electric and mag--

netic fields have been derived. The reader may refer to references

16 and 17 for further discussion and solution of the integral
expression (2.15) for the induced electric current. As stated
earlier, direct analytical solutions for the radiated fields,
expressions (2.1) and (2.17), are complex unless one reborts to

numerical techniques. 1 8 Further, based on the saddle point method,
explicit expressions (2.18a, b) have been obtained in the far-

field region for the radiated fields.
In figures 2.3 through 2.6 are shown the numerical

results of the distribution of the radiated far fields. These are
appropriately normalized with respect to (e'yr/r) and V(s) = 1 is
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assumed. In figures 2.3a and b are shown the magnitude and phase

of Ez far field distribution as a function of observation angle a

for differe;at values of lybi = b, (y = JK) and for a fixed value

of loading V'(s) = 50 + JO. The same results are obtained inw
figures 2.4a and b for H Figures 2.5a and b indicate the mag-

nitude and phase of E far field distribution as a function of a

for different values of the impedance loading Z' for a fixed value
w

of lybi - 0.01. The same variations are givei in figures 2.6a and

b for H The results thus far obtained are useful to analyze
infinite)y long parallel cage wires.

C. Infinitely Long Loaded Wire Cage

The analysis of the infinitely long loaded wire antenna

as discussed in section II-A, can be similarly extended to infi-

nitcly long multiple parallel loaded cage wires. We shall first

discuss the general problem and later specialize to a circular

cylindrical wire cage.

A set of infinitely long lot.ded thin wires are all

oriented parallel to the z axis in an isotropic homogeneous medium

as shown in figure'2.7. There are N parallel wires of radius an#

n w 1,2,3,...,N which are located at (Tnn ) rith their-axes dis-

placed at least a few radii apart. The respective parallel wires

are excited by source generators of voltage n (s) across a gap of

width 2dn, all centered at z = 0. If In (z,s) is the induced axial

current on the nth infinitely long thin cage wire, at any point P

in the medium the z component of the magnetic vector potential is

given by the superposition of the individual wire contributions, 2

AzcJ(Yzs) = A (n',z,s) (2.20a)

Zn=1 Zn

where the superscript c refers to the cage wires and ceferring to

expression (2.3),

Azn ,n) J n(an,',s) KO(u!T - n I) e•Z d; (2.20b)
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z

12(I

~'' ii'/ d p

0o Y

7 ff(z

!i . ... .... ...... .I n ( Z )•

Figure 2.7. Inf 4.nitely Long Parallel Loaded Thin Cage Wires
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in which

I1-y nI " [(x xn)2 + (Y yn)2] (2.20c)

and the term Fn (a n 4,s) is proportional to the Laplace-transform

of the corresponding induced electric current on the nth wire.

Again it is assumed In(z,s) has no angular variltions and for each

* of the n wires

Iyani n = 1,2 ... ,N (2.21)

so that no modes internal tc a wire are excitedý. The electric and

the magnetic fields for the wire cage structureiare obtained by

the expressions (2.4a,b) with Az. replaced by 1(c) Since each of
z "

the cage wires is excited by an ideal gap of width 2dn, within

each gap the electric field varies approximately as -Vn (s)/2dn;
similar to the expression (2.7), the electric current In (an ,Zs)
and the scatt-red electric field EVc)(T,z s) should satisfy the

z
following impedance boundary relationship,

(c Vn(s))

z i
j()(at~s (2d.22z))Z ()I a ,,s

1 ,, at - •n (2.22)

n =S~n 1,2,3,....,N

where

i Pdn(z) = 1 , Izl < dn

n

0 , z > d
n

and Z, (s) is the series axial impedance per unit length on the
w n

nth cage wire (Appendix A). In terms of the transformed quantities.

the impedance boundary relationship (2.22) becomes
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i-c cy 49) (s) G~ (- '()I~a ~s2.23)
z n n n") + Zw,n~s na

,,,1,2,3,... ,N

According to the expressions (2.1), (2.2d), (2.4a), and (2.20),

the z component of the spectral electric field is
- - s U2 K(Uj~ _ •mI) 2 (2.24)

Similarly, the induced electric current along the nth infinitely

long cage wire is obtained from, referring to expression (2.11),
1 r -23Az (Tl, Z lS)

I(an ) - _-- y, n , (2.25)

San

where V' and 0' are the local cylindrical coordinates about the

a~xis of the nth wire. Assuming In(anz,s) has no 0' angular vari-
ations and the cage wires are placed at least a few radii apart,

the expressions (2.1), (2.2d), (2.4b), and (2.20) yield.

I(an,•,;s) - 1 2 1ranuKj(uan) tn(ancs) (2.26)

On substituting the expressions (2.24) and (2.26) into the impe-
dance boundary relationship (2.23), the following expression is
obtained fir determining Fn (an •,s),

N -_ U2 Ko((uIn" - VmI) tm(am,,,s) = -Vn(s) Gn(O)
mr1 y

+ Zn(s)[ 2 wanuK,(uan) •n(an.•;.s)] (2.27)

n - 1,2,3,...,N

This forms a set of linear simultaneous equations and the spectral
term Fn(an, ,s), n = 1,2,3,...,N can be determined as the solution

to the following matrix equation
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EýnmJ E'rqJmEýnJ (2.28a)

where the matrix elements are

t2
Snw " VU2K lln n fl m (2.28b)

- u2Ko(Ua + 2ranUyKl(uan) ZE(s") n - m (2.28c)

_ and
and -sinh(ýd ) 2

E Vn(s) I-"s (2.28d)-n - ns ýd n) s

The matrix equation (2.28a) yields the solution

[f mL nru 1Eýn] (2.29)

The current on each cage wire is obtained from (2.2d) and (2.26),

and the magnetic vector potential obtained by substituting the

resvlt of (2.28) into the expression (2.20). Thus the radiated

fields are obtained from the expressions (2.4) and (2.20).

D. Infinitely Long Loaded Circular Cylindrical Wire Cage

The general problem discussed in the previous section
is specialized to a circular cylindrical wire cage. Suppose all

the N wires are placed along the circumference of a large circle

of diameter 2A and distributed uniformly around the circumference.

If the circular wire cage consists of identical wire geometries,

figure 2.8, which are fed from identical source generators, the

matrix equation (2.9a) simplifies into a diagonal form.

Referring to figures 2.7 and 2.8, let

V(s) - Vn(s) source voltage across each gap

2d 2dn width of each gap
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o y

S. n o

Figure 2.8. Infinitely Long Circular Cylindrical Wire Cage Antenra
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a - an radius of each cage wire

-w(c)' s.
.(s) n (s)/IN axial series impedance loading of

each cage wire per unit length

for n 1,2,3,...,N

Under these symmetrical conditions, the spectral func-

tions Fn(an,,s) are all the same, i.e., = t = . =_ n ' 1 = 2 =3 FN

Ma((c)(ars)). Hence the induced electric current on each of the

cewires is the s ,1(z,s) = 12 (z,s) = 13 (z,s) N- " (zs)
( c)(z,s)/N). Applying these relationships for the concentric

wire case, the expression (2.28) yields the solution,

-(c 2 G(ý)
F~c)(a,Cs) = V(s) G()(2.30a)- ' suB(• ,s)

B(r,s) u *~ ~ + 27aK'1'u) (2.30b)

n=1 -0

comparing the expressions (2.13b) and (2.30b), the summation in

(2.30b) accounts for various mutual interactions and the factor

AI,n is the inter-chord distance from wire 1 to wire n given by,

A1,n a n 1 (2.30c)

A1 =,~ ' -1 n , n - 2,3,...,N (2.30d)Al,nn

Since the angle between any two consecutive wires is 2Tr/N, the

inter-chord distances (2.30d) can be written as

A 1  =2A sin[Y (n - 1)], n = 2,3,:..,N (2.30e)

Hence the current on each zage wire is obtained from the expres-

sions (2.2d), (2.26), and (2.30a),
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azs ()af G(ý ~)d (2.31)L • ' j o C• .:

and the corresponding magnetic vector potential is obtained by

substituting (2.30a) i.to the expression (2.20),

,(°)(z,,zIs). •(:) m•.K°(u - I) I e dC
S'4 (2.32)

The electric and the m gnetic fields can now be written using the

expressions (2.1), (2.), and (2.32) in spectral form as
-(c) !,C•'

where [Q] is a vector for the circular cylindrical wire cage
- iantenna and is given by

and he [J~m ~J -(2.33b)

and the elements of the vector are,

N
S- fm=I (2.33c)

Q, -VS .•(O ,s ' -1 , (2.33c)
N

92i V(s) G(C) 1 (I(u~ MiI} j~-~ I)] (2.33d)
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Again we have difficulty obtaining general solutions

for the fields (2.33a), since the integrations are to be performed

along the C contour, figure 2.2. But in the far field region as

Y - -, the expressions (2.33) reduce to simpler forms (Appendix

B) based on the saddle-point integration method. Hence for the

infinitely long circular wire cage structure, in the far field

region the electric and the magnetic field components are obtained

as (figure B-i),

oC)rcos(cs) e-yr
Z -. 2 (Ya) r Cf (2.34a)

~~# -() yr

Z H~c(r~aei Vs) 1~ e Cf (2.34b)

where the cage factor is

Cf NI 0 (yA cos(a)) (2.34c)

IO is the modified Bessel function of the first kind, zero order,

r and e - 90 - a are the spherical coordinate variables. In the
above expressions

N
L2 (Y,a) - cosa 'I Ko(YA1,nCOSa) + h 2 (s) K1 (ya cosot) (2.34d)

n=1

i•w(c)' (S)
h2 (s) 2a WZ (2.34e)

E. Numerical Results: Far Field

In section II-C the infinitely long loaded wire cage is
analyzed, while the sp•ecialization to the circular wire cage is
given in section II-D along with the expressions for the induced
electric current, radiated fields and far-field distributions.
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In figures 2.9a and b are shown the magnitude ard phase

of the E(c) far-field distribution as a function of observation

angle a for different values of the loading Z(C) and for a fixed

value -of KA - .,Ka_ = 0.01 and number of c.age wires IN - 12.

The same variations are given in figures 2.10a and b, but for the

far-field j() Similarly in figures 2.11a and b are shown the

magnitude and phase of the E~C) far-f ield distribution as a func-

tion of. angle a for different number of cage wires N and fixed

impedan ce loa dings Z~-'= (50 + JO) fl/in. Further, the figures

2.12a and b give the distribution of the corresponding i~c) of the

far field.
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III. INFINITELY LONG LOADED HOLLOW CIRCULAR CYLINDRICAL ANTENNA

The analysis of the hollow cylindrical structure1 6 ' 1 7 is

slightly different from the previous cases discussed wherein the
wire antenna structure is assumed as thin, so that the fieled

inside the wire can be completely neglected. This is p .:ticularly

true with the case of solid thin-wire structures. 1 3 B1t when the
radius becomes large, one has to analyzebo:th the e..ternal and the

internal regions separately and enforce the relevant impedance

boundary condition on the surface of the hollow cylinder. It is
assumed the cylinder wall is very thin and for all the mathematical

considerations, the thickness of the wall can be neglected. The
material of the wall of the hollow cylinder is lossy and homogene-

ous and can be characterized in terms of a uniform sheet impedance
(Appendix A). Even with an external impedance loading function

introduced, the concept of the boundary condition is based on a
uniform sheet impedance in ccntrast to the surface impedance con-
cept utilized in the previous sections.

The infinitely long hollow cylinder is oriented along the z

axis in an isotropic homogeneous medium. The radius of the cylin-
der is C and is excited by a source generator of voltage V(s)

across a gap of width 2d centered at z = 0, as shown in figure 3.1.

The medium characteristics (pca)are the same both for the inter-

nal region 1 and the external region 2. The z component of the
magnetic vector potential is given by, in region 1,

Az"1)P'zs)= ,'r-"'1-CPI•(Cv•'S) K°(uC) 11°(u1P) e d4

T < C (3.1a)

and in region 2,

-(2)(•zs .c
Al )T,z,s) fC 1 F(C,r,s) I0(uC) K0(u'F).e~z dc

T > C (3.1b)
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Z) t0. z

_ z2d 1._0

vrn, - y2

Figure 3.1. Infinitely Long Loaded Hollow Circular Cylindrical

Antenna
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where 1 and KO are the modified Bessel functions of first and

second kind, zero order. The spectral terms FI(C,r, ,s) and

are proportional to the Laplace transform of the net

electric current_[I 2 (C,r~,s) + [I(C,•,s)] of the external and
internal surface of the hollow cylinder. Again electric and mag-
netic fields in the regions 1 and 2 are obtained by substituting

(3.1) into the expressions (2.1) and (2.4). The tangential elec-
tric field EzQ(,z,s) at the wall surface is continuous, while the

tangential magnetic field H¢,(Y,z,s) is discontinuous to the extent
proportional to the difference of the external and the internal
surface currents. Hence we have the following impedance boundary

relationship

"(1)¢-Z'S•z= -z(2) c+'z
zE 1 (C z,s) E(2)(C ,z,s)

2d Pd(Z) + Z'(s) [I(I)(C+,z,s) + i( 1 (C-,z,s)]

(3.2)

where Z'(s) is the impedance loading function per unit length of

the infinitely long hollow cylinder,

-s A5 (S)
ZI(s) = 21tC (3.3)

and Z s(s) is the sheet impedance in ohm of the hollow cylinder

(Appendix A). In terms of transformed variables the boundary
relationship (3.2) becomes,

E (C-E s) z()(C+'C 's)

-- (s) G(;) + Z'(s) (1 2 )(C+,C,s) + 1(l)C-,Cs))

(3.4)

Referring to the expressions (2.1), (2.2d), (2.Aa), and (3.1) the
z component of the electric field is given by,
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i r,),s) 4 U 3.5a) 0(~')F(C~s

1 <
and

I(2) ,s =- S 2ioCi1(C 1 u)F(~~s 36.

1z (-,Cs) U2 I (uC) Ko(UC) F2(C,',s) (3.5b).

osFurther, the external and the internal currents on the hollow

rcylinder usng the expressions (2.1), (2.2d), (2.4b), and (3.1)

0 F2(C,ý,s)
!i awhreobanda

P(2)(C+,',s) = u 1 2Cu Ko(U) (Iu(UC) P2(C,7,s) (3.6b)

00

Hon substituting the expressions (3.5c and (3.6) into the boundary
relationship (3.4), we have

fi(c.¢,s)- F2(Cc.¢s)

ý s) u((,s3.7a)

i where

SP(Cs) l U(oUC) KoCUC) + 27rCy • [•C] (3.7b)

Hence the electric current on the internal and the

external surface of the hollow cylinder is obtained from (2.2d),

(3 6), and (3.7) as,

i K o(UC) OI(uC)
(C~zC G'e- e~z dC (3.8a)

* -~~ o fCPrs
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SI(2 )(C,z,s) - G0 fu ez d; (3.8b)

The net total current flowing on the hollow cylinder, with the

assumption of current flowing in the z direction as positive, is[I(2)(c,z,s) + i(1) (c,z,s)],

()czs) J G(ý) 1 e 'z dC (3.8c)
o . uP(Cs)

Since the surface current density is independent of 4, it is

obtainea by dividing the expression (3.8c) by the circumferential

length 2,iC. The z component of the magnetic vector potential in

the regions 1 and 2 is obtained by substituting the spectral term

(3.7a) in the expressions (3.1a,b),

Az(1(?''s) • 2 f °u)I(Y
z 2-j G(S) % ' (' uP(u) e~z dc (3.9a)

zs C• ukc(•s)'<C

A2(zs)- () 0('i' e~z d• (3.9b)

Y>c

The electric and the magnetic fields radiated are obtained

using the expressions (2.1), (2.4), and (3.9b) in the regions 1

and 2 in the spectral form as,i(,2
= [~(1z,2 (3.10a)

zA1,2) (y,,s)

where [j}(l' 2 )] is the vector for the infinitely long hollow cylin-

"drical antenna,
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i(1,2)1

(1L,22 (3.10b)

and the elements of the vector have the formu 0 o UC, Io UTLI
lul 0o(uC) Ko(uY)jwz1s)=•s) G(;) =(3.10c)

M(' s)

IY -n 0 (uC I1(u'i'),)

- Ko(UC) II(U (uC

SoUV ls) G(C) 0 (3.10d)•=(1,) = (s) (•) (r,s)

As T * -, the field expressions can be reduced to si,-riler forms in

the far field region using the saddle point method 1 4 discussed in

Appendix B,
__ __ -yr

-z(2)(~as • ~ Cosa er P•
E; - coS) (3.11a)

ZJ3 (y ,a)

Zo2)(as 2_ 1 e-yr~z-P(a V(S) Pf (3.1'b) I

0 2 L 3 (y'a) r f

where the hollow dylinder factors are

f M lo(YC cosa) (3.11c)

L3 (y,a) = cosa I(C Cosa) Ko(yC cosa) + h3 (s) C oa (3.d)

h 3(s) =2wC Z'Sz (3.11e1

0
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A. Numerical Results: Far Fields

Based on the analyti.Ll expressions formulated in the

previous section for the Induced electric current, radiated

fields, and far-field distribution for the case of infinitely

long loaded hollow cylinder, numerical results are presented in

figures 3.2 through 3.5 for the radi! ed far-field distribution.

In figures 3.2a and b are shown the magnitude and

phase of -(2) of the far-field distribution as a function of the

observation angle c for different values of the radius C of the

hollow cylinder, and for a fixed y - J1 and loading function

Z' - 50 + JO. Figures 3.3a and b indicate the same variations,

but for the R( 2 ) component. Similarly in figures 3.4a and b are

shown the magnitude and phase of the 2component ar-field asz
a function of a for different values of the loading function Z

and for fixed value of lyCi - 1. Further the figure3 3.5a and b

indicate the same variations, but for the H(2)

I2
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IV. ELECTROMAGNETIC EQUIVALENCE BASED ON FAR FIELDS

In the previous sections, three different types of canonical
infiaitely long antenna geometries are studied viz., (i) the

infinitely long loaded solid wire antenna of radius b and impe-

dance loading function per unit length Z•(s), (ii) the infinitely

long loaded circular wire cage antenna of cage radius A, radius
of each cage wire a, number of cage wires N and its corresponding

impedance loading function per unit length along each of the cage

wires ZW (s), and (iii) the infinitely long loaded hollow cylin-

drical antenna of radius C and sheet impedance loading function

For each of the above canonical antenna structures integral

expressions for the induced current, and for the radiated electric
and magnetic fields are derived. Based on the saddle-point tech-
nique, far-field electric and magnetic field components are

obtained in a more simplified form. Table II summarizes the

results thus far obtained for the far-field distribution.

It is now possible to compare (and thus approximately equate)

the distribution of the far-field components of the circular wire

cage antenna as against the far-field distribution of a hollow

cylindrical antenna. Such a comparison would allow establishing.
electromagnetic equivalences based on the far-field distributionr

Given the circular wire-cage parameters viz.., number of cag- aires

N, cage radius A, wire radius a) and its loading function Z (c)'(s),w
the electromagnetic equivalence allows one to pick equivalent
radius C = e and the corresponding loading function Z'(s) Z' (s),eq eq
so that both the structures radiate the same far-field distributions.

The equivalent parameters are in fact a function of the.compl3x

frequency s, and the observation angle a. The dependence on a
can be eliminated in some cases discussed further.

We shall now consider the electromagnetic equivalence between

an infinitely long loaded circular wire cage structure and a loaded

hollow circular cylinder based on the same radiated far fields.

Columns 2 and 3 in table IIA for the far-field distributions are

equated,
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L2 (ycl) L3 (y,a)

eq

eq
where

Teq - equivalent radius

"eq = equivalent impedance loading

From the expressions (2.34) and (3.11), the expression (4.1) takes

the form,

NIo(YA cosa)

N
Cosa • KXo(yAlnCosa) +h 2 (s) KY(ya cosa)n~n

10(YC Cosat)
= . . .- (4.2)

cosa Io(YC cosa) Ko(yC cosa) + h3(s)IYC cosaj C=IY

eq

The expression (4.1) depicts equivalence condition for the loaded

cage wire model and the hollow cylinder model, and is a function

of the frequency y and the angle of observation a. Practically it

is impossible to extract both the equivalent radius Teq and equiva-

lent impedance Vq (s) from one equation unless one makes certaineqchoices or forces one more realizable constraint. Some of the

alternatives available are discussed in the following.

CASE I: Equivalence of perfectly conducting wire'cage and
perfectly conducting hollow cylinder

For this we have the impedance loading functions

"zw- 0 . (4.3a)
Lw

and

Z t (s) - 0 (4.3b)
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the expression (4.2) yields the equivalence condition

NN Ko(YAl N1o(yA Cosa) Ko(y1eq cosa) = 0 (4.4)
nil o n1 cosc) - I(A oc)K 0 yic

We note 'i(C) is to be determined as the solution to the

equation .(4.4) and it appears implicitly in the argument of the

modified Bessel function. Further

T(C) . T(C)(y ,Cos()) (4.5)
eq eq

In the quasi-static case jyAj << 1, the modified Bessel

functions can be replaced by their small argument approximations, 1 5

K (z) - -in 2 (4.6a)

10 (Z) = 1.0 (4.6b)

On substituting the above small argument approximations, the

equivalence condition (4.4) simplifies to

T(c) , [aA1 , 2 A1 , 3 .. A1 ,N] (4.7)eqO 0....

where the inter-chord distances A n - 2,3,...,N are defined in
(2.30) It is 1s(2.30). It is interesting to note the equivalent radius )

independent of the variables y and cos(Ca) in the quasi-static case.

The equivalence condition (4.4) yields the same result (4.7) even

for the limiting case as a * w/2 and lycoscl << 1. The equiva-
lent radius result (4.7) checks with King's equivalent radius2

obtained for a perfectly conducting finite circular cage antenna.

In fact, _(c) can be shown also to be identical to the equivalent,eqo 3
radius obtained by Baum,

T(c)
e-- [- N L-- (4.8)
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which is based on conformal transformation; .4n equivalence between

a single charged conductor and number of equally spaced roicentrl't

charged conductors. Appe,:dix C discusses the two results (4.7)

and (4.8) as one and the same.

In figure 4.1 is shown the variation of the normalized equiv-

alent radius T(c)/A as a function of A and similarly in figure 4.2
eq0

"as a function of a/A, for different values of number of cage wire

N.

As stated earlier '(c) is independent of the complex fre-
eq.

quency y and of the variable cos(a), figure B-2, in the quasi-

static limit. The first order effect of the complex frequency y

on the equivalent radius "(c) can be obtained if h gher orderTeq

terms are included in the series expqnsion of the ondlfied Bessel

functions, and can be written as, 1 5

K [--n(- +)I (Z) 1 + (12)49a

I Z2 ( 2)2

1 0 (z) - 1 + + . (4.9b)

Picking the first two terms in the above series expansion (4.9)

and substituting into the equivalence condition (4.4), it reduces

"to the following transcendental equation,

rt'(c)• B n .(c) -B 2 0 4 1 a

B1 - 4N (4.lOb)
(yA)

B2 - [- +2N] 4 N (4.10c)
A ~ (yA)

, = Y cos(a) (4.10d)
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Further, the equation (4.10a) yields the first order solution,

( ) A (!ý) [1- !( 2 + 2N)(Y A)] Iy-A!< 1 (4.11)

The expression (4.4) is also solved numerically19 to deter-

mine the more exact quasi-static frequency range up to which the

results of figure 4.1 are valid. Table IIIgives the lowest first
zero solution to the implicit equation (4.4) for a particular set

of wire cage parameters. As the frequency approaches large values,

the equivalent radius result (4.7) is no longer valid, and (c)eq
should be obtained from the s'lution to equation (4.4) or equation

(4.11) for a given complex frequency y and observation angle a.

Figure 4.3 indicates the variatio- of the equivalent radius Vfc)
eq

as a function of K'A. For very large values of IyA cos(a)c , one

may substitute asymptotic forms of the modified Bessel function
in tne expression (4.4) and solve for the equivalent radius T(c)

eq
CASE II: Equivalence of loaded wire cage and loaded

hollow cylinder
For this general case the equivalence condition (4.2) should

be considered leading to the difficulty of one equation and two

unknown parameters Teq a-d 'Zq(s) to be determined. We can con-

veniently make a choice of one of the unknown parameters. Suppose

the equivalent radius is chosen to be the same as the frequency-
dependent equivalent radius ,(c) (as obtained from (4.4) or approxi-

eq
mately from (4.11)) for the perfectly conducting case (case i),
we obtain for the equivalent impedance loading function Z'q(s),

Te •Te(C) • (4.12a)
eq -eq

4c (s (.lYT(C) cos~a))
Z~q(S) Na cosa K1 (ya cosa) 1 0(yA cos(a))

(4.12b)

As pointed out earlier, the equivalent impedance-per-unit-length

function Z'q(s) is a function of y and cos(a). In the quasi-static
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Table III

KA cos (o ) ... (c ) -e__ ._.
eq A

. j 0.0 .08395 J-.00010 .83953 J-.00096

.2 0.0 .16844 -. 00074 .84221 -. 00370

.3 0.0 .25353 -. 00239 .84511 -. 00795

.4 0.0 .33913 -. 00538 .84783 -. 01345

.5 0.0 .42508 -. 00999 .85015 -. 01999

.6 0.0 .51121 -. 01647 .85201 -. 02746

.7 0.0 .59736 -. 02506 .85337 -. 03581

.8 0.0 .68338 -. 03605 .85422 -. 04507

.9 0.0 .76909 -. 04981 .85454 -. 05534

1.0 0.0 .85430 -. 06681 .85430 -. 06681

1.1 0.0 .93877 -. 08772 .85343 -. 07974

1.2 0.0 1.02218 -. 11346 .85182 -. 09455

1.3 0.0 1.10405 -. 14535 .84927 -. 11180

1.4 070 1.18360 -. 18534 .84543 -. 13239

1.5 0.0 1.25953 -. 23643 .88969 -. 15762
1.6 0.0 1.32939 -. 30342 .83087 -. 18964
1.7 0:0 1.38810 -. 39446 .81653 -. 23204

1.8 0.0 1.42353 -. 52418 .79085 -. 29121

1.9 0.0 1.40057 -. 71896 .73714 -. 37840

2.0 0.0 1.19554 -. 99934 .59777 -. 49967

0.01

N 12
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frequency range IyAj << 1., the above expression (4.12b) simpli-

fies to

z(c)(s)
Z'(s) = (4.12c)eqN

which is exactly the equivalent parallel impedance of the N cage

wires. The first order effect of the complex frequency y on the

equivalent sheet impedance per unit length Z Cs) can be obtainedýeq~s
by substituting higher order terms for the modified*Bessel func-

tions in the expression (4.12b), hence we have

4 + 2  (r4Y"I'(c)2  2(c), (s)
e1 + Y N (4.13a)

2 2I (c) 2 \2 ~(c)"'zw

1 + 2 2 4 __w_ ~, s
AYf,(c) (y'A ()y'A NSeq e

for 2 < 1 (4.13b)

CASE III:

In the.above case II, we made a choice for the equivalent

radius to be the same as the perfectly conducting case. We can

make another practical choice of choosing the equivalent radius
c)= A, the radius of the wire cage, and work out the correspond-

-eq
ing appropriate equivalent loading function so that far-field

equivalence holds good.

Hence substituting A in the expression (4.2) yields
eq

an expression for the equivalent loading function ZV (s). In the

quasi-static limit as 1yA1 << 1, we obtain

2s -(c)' ( Ycos (z(c0(s N 2- -n(!ý (4.14)
eq N. 270
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which shows an angle dependent (a) positive inductance per-unit-

length term as

Z1c) (sS
.eq() = N + sL'

(4.15)

L cos2(a) In (-c) > 0

'Veq /

Note that as s * 0 ýhe inductive term is negligible giving the

wire loading as the dominant term as one would expect. For higher

frequencies, however, the property of having an angle (a) depen-

dent imnpedance per Ait length is an undesirable feature because

there is then no unique equivalent impedance per unit length; it

depends where one looks.

30
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V. CONCLUSIONS

A preliminary analysis is carried out to aim at suitably
modeling hybrid EMP simulators made up of thin wire structures
and wire meshes. Canonical infinitely long loaded wire geometries
in the form of a thin wire, a circular wire cage and hollow cylin-
drical structures are analyzed systematically by treating them as
boundary value antenna problems. Results of the induced current
distribution and the corresponding radiated fields are obtained
for each of the canonical geometries.

The radiated fields of the loaded concentric wire cage are
compared with the radiated fields of the loaded hollow cylinder
to arrive at an electromagnetic equivalence condition. Based on
this equivalence, the equivalent radius of the wire cage ard the
corresponding equivalent sheet impedance per-unit-length loading
function are obtained so that both the compared structures radiate
the same far fields. In fact the results obtained are a function
of the complex frequency. In the low frequency ranges an explicit
expression for the equivalent radius of the cage is'obtained; one
has to solve implicit equations for higher frequencios.

The theory and the concept of the electromagnetic equiva-
lence applied to wire structures, discussed in this note is used
in the future work as a foundation to effectively model hybrid
simulators including their complex feeding generators.
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APPENDIX A

LONGITUDINAL *-INDEPENDENT IMPEDANCE CHIARACTEfISTICS
OF CIRCULAR CYLINDRICAL STRUCTURES

The impedance characteristics of infinitely long circular-

cross-section structures are discussed in detail in reference 20.

A sunm'ary of the expressions utilized in the previous sections is

given below.

1. Thin Solid Cylindrical Wire

In figure A-i is shown the geometry of an infinitely long

solid circular thin wire of radius b. The mrterial of the wire

has homogeneou3 characteristics of permeability Vw' permittivity

C., and conductivity a w. The structure is oriented along z-axis

in an isotropic homogeneous medium. Only axial electric current

I(rc,s) is assumed to exist and hence only the TMl (transverse mag-

netic to z) electromagnetic field components E (t,s), EZ(C,s) and

S(0,s) are present and are symmetric with respect to ¢-angular

variations. [
In the region 7 < b, the magnetic vector potential is

AZ,,s) C(ý,s) Io (U w) (A.1)

where

uw [ -2 C 2 (A.2)

S1 s(w + s A.3)

Ia the expression (A.1), N(c,s) is a constant wh 4 ch determines the

potential distribution. If displacement currents are neglected

-w M [UwawS] . The series axial impedance per unit length of the

solid infinitely long wire is given by

'C',• s)
-w -(A.4)
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'2b

Figure A-1. Thin Solid Cylindrical Wire
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which is the ratio of the axial electric field to the total axial

current. Using the expressions (2.4a and b)

i,(;s) - 2 w~ 0o(Uwb)W• ,b(aw + szw) Il(uwb) (A.5)

10 and 11 are the modified Bessel functions of first kind, zero

and first orders, respectively. In the quasi-static range
2 2

141 >> C and the axial impedance per unit length reduces tc

YwI o(TYwb) 
( .

V 27b(a + Sw ) II(Ywb) (A.6)

For the limiting case of static conditions, s * 0,

I0 (ywb) = 1 (A.7)

11 (Ywb) v W (A.8)

Wý (A.9)w• b2 aw

The infinitely long thin cable wire characterisitcs for a

typical copper conductor aw = 5.65 x10 7 mho/meter are shown in

figures A-2 and A-3, as a function of frequency in the quasi-

static range for different radii of the wire. Figure A-i gives

Rý - real (Z), resistance of the cable wire/meter length and

frigre A-2 gives X'w imag. (Z'). self reactance of the cable wire/
met*-r length. As the frequency is increased both R; ar~d X'

increase linearly on the logarithmic scale. At very low frequencies

X' approaches zero, while RI approaches its static value.

Even if the structure is loaded with extra lumped impedances,

it can be included into Z (s) of (A.6) and characterized as cer-w
tain uniform impedance per unit length as a function frequency.

Whenever external loaeings are built into the structure, the

308
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impedance loading due to the material characteristics of the wire
is a very small percentage of the total loading and hence can be

neglected. The concept of the impedance definition is based on

the surface impedance in contrast to the sheet impedance defini-
tion discussed in the next section.

2. Hollow Circular Cylinder

The geometry of the hollow cylindrical tube, having a radius

equal to C, is shown in figure A-4. The thickness of the wall is

neglected and the material of the tube has permeability jc , per-

mittivity E and conductivity ac. The tubular structure isc c
oriented along z axis in an isotropic, homogeneous medium. Again,

only the axial currents are assumed to exist on the outer and
inner surface of the hollow cylinder. Sir.;lar to the definition
(A.4), the impedance per unit length of the hollow circular cylin-
der is Civen by the ratio of the axial electric field Ez(i,s) to
the net total current in the axial dire-tion which is obtained by
the sum othe outer "i(2) (c,s) and the inner I(1)(ý,s) total
currents,

s ((A1s)

1(2) (C) +

evaluated on the surface of the cylinder. A •ording to the
expressions (3.5) through (3.8) and (3.10) tthe expression (A.IO)
takes the form, after making use of the Wron in relationship

Zoc 2
-Z(1) uc Ko(ucC) 0(ucc) (A.11)

where

U 2 - _ 2[] (A.12)

.c [S(a + EcS)]' (A.13)
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z

x• cPC

Figure A-4. Hollow Circular Cylinder
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and in the quasi-static range y 21 >> C2, the axial impedance

Z'(s) per unit length of the hollow circular cylinder becomes,

zoc
ZZ(s) Yc yK(YcC) Io(YcC) (A.14)

where r
c= [ +C (A.15)

Further:, the sheet impedance of the cylinder is given by

z (s) = 2rCZ'(s) (A.16)

3. General Solid Cylindrical Wire

In section A-(l), the impedance characteristics of a thin

solid cylindrical wire are discussed with the obvious assumption

that the current on the surface of the wire is uniform with

respect to 0-angular variation. Let us consider another cus, with

current density Jz (¢,s) on the surface as a function of angle

but which is independent of the z-coordinate variable. Then in

the region'i < b, figure A-1, the electric field distribution is

given by,

E z,,,s) = (b,m,s) I(yw) ejme (A.17)

where C is the mth Fourier mode coefficient, so that the repre-

sentation (A.I) is for the special case of the m = 0 mode.--

According to the expression (2.4a and (2.4b) the current density

on the surface of the wire is obtained,

z(b 0,0,s) = H,(b,ý,s)

. 1 ý_(b,~ s) I•(ywb) e, (.18

313



EKP 1-27 252-81

On the surface of the cylindrical wire, we have the surface

impedance boundary relationship,

z(b,6.,s) - Z s w(S) J z (b,ý,s) (A.19)

Substituting (A.17) and (A.18) into (A.19) and enforcing orthxgon-

ality of the modes

I m(y wb)
z (S)Z yb) (A.20)i (s) OW IA(ywb)

Hence for any given mode excitation m on the wire, the mode sur-

face impedance Zsw(s) is associated.

4. General Hollow Circular Cylinder

The impedance characteristics of the general solid cylindri-

cal wire can also be extended to the case of a hollow circular

cylinder, figure A-2, with the current density J(t)(COs) on thez
surface as t, function of angle t, but is independent of z-

coordinate variable. On the surface of the hollow cylinder, we
have the sheet-impedance boundary relationship,

E z (Cs) - Zs(S) J) ,cs) (A.21)

where the current density is obtained by the difference in the

tangential magnetic field

3- fl~cs - (COS) -H_(l)(C,*,s) (A.22)

Hence for any given mode excitation m on the hollow cylinder, the

associated mode sheet impedance Zsm(s) is given by

Z sm(S) - ycC Zoc I M(YC C) Km(ycC) (A.23)
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APPENDIX B

FAR-FIELD EXPRESSION

The 0-component of the msanetic field radiated by ths

infinitely long thin solid wire is given by the expression (2.17a),

H VYs J G(ý) - ez dý (B.1)
o C D(C,s).

In fact the expression (B.1) reduces to the (2.19) for the total
axial current I(z,s) = 2'7bH (V,z,s) evaluated on the surface of
the infinitely long wire 7 b. In the expression (B.1), the
integration is along a Bromwich contour in the c-plane, figure
2.2, and

u - [Y2 2 (B.2)

5(c,s) - uKo(ub) + h1 (s) Kl(ub) (B.3)

h(s) - 2ib(c + se) Zw(s) (B.4)

and Zw(C,s) as given by the expression (A.5) has the form,

-ww 2 -

•_ _ ( B . 5 )

21b(a + SE 2 2.§

and Z (C,s) would be independent of C, (A.6), in the quasi-static-w
region. Assuming an ideal slice generator excitation, d - 0 and

It is possible to obtain the general solution to the inte-
gral (B.1) by closing the contour, figure 2.2, in the left half

of the r-plane for z - 0, but this procedure involves some
numerical work. However, as T * -, in the far-field region, an
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explicit expression for H (T,z,s) can be obtained based on the

saddle-point method of integration. 1 3 ' 1 4 With the substitution

C - C' + JC", ý' = 0 and y - Jp, the integral (B.1) reduces to

the form discrss,!d in reference 14 and hence we have for z > 0,

K. NY(u) _J4uZ C
H (i'9z's) V f 1J zd (B.6)

V/

o -- D(4",s)

and

"u n JV - j(p2 - C,,2 ]& (B.7)

In the far-field region as T * ,15

KiNuT) e-j''' 7, e-J~v•÷''+z1 larg(uT)l < (B.8)

The saddle point Co .is obtained by solving the equation obtained

from the exponent of (B.8),

d C + ,C,= , = 0 (B.9)
UZ, 0

The expression (B.9) yields*. = p sin(a), with the proper substi-

tution T = r cos(a), z = r sin(a) and 8 = 90 - a where r and 6 are

the spherical coordinate variables and a is the angle measured

from z - 0 plane, figure B-i. Calling the exponent term in (B.9)

as

f(V") - -jývy + C"z) (B.10)

and at C" -C"

M-) -jp(V cos(a) + z sin(a)) (B.11)

In the neighborhood of the saddle point c" = " f(V") can

be expanded in a Taylor series,
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M -- -JCP(? cos(a) + z sin(a)) IF (V" - (3.12)

Hence, according to the expression (B.12) the path of the saddle

point integration is obtained by forcing the imaginary part of

(B.12) to be constant along the path. With the substitution

o R dl and p - IpI eJ 6 2, the path of the saddle point

integration is given by the imaginary part (Im) as

Im Jp (Y co2(a) + z sin(a)) 3 Rp2ces3( 61 2)i1 constant

i (B.13)

and (B.13) is satisfif:i only when

Re [eJ12]2 0 (B.14)

The expression (B.14) yields (S1 - 62) = ±w/4. Only the positive

value of (6I - 62) = r/4 represents the correct slope of the inte-

gration path through the saddle point r" p sin(a), which is also

obvious from the further transformations used in reference 14.

Changing the variable of integratibn 'C" in the expression (B.l)

to T by the transformation C" = p sinT, and T = a1 + ja2, the

s-:dle point is located at a1 = a on the real axis of the complex

T-plane. 4e reader may refer to reference 21 for the complete

details of the various transformations from C"-plane to T-plane

and the pat 's of the integration. Hence the expression (B.8) can
be written •s

KlUT e-• 6 7 e-j rrcos (T-CL(B15
KI(P) -J•z •j2pgcos(T7)

In the far-field region, the expression (B.1) for H (Y,z,s)

becomes,

- Vy _____+____ ejrpccs(T-C)
H (I,z,s) 2 IT_ ja_ j2p+cos(oY) p COS(T) dT

0a- L 1(yal (B.16)
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Most of the contribution to the integral (B.16) comes from the

vicinity of the saddle point T = c, and with the approximation

cosx- 1 - x 2 /2, and T - a- ejir/ 4 , the expression (B.16) reduces

to,

~ -yr
H¢Q(.,z,s) V dri (B.17)

0 L1 (y,a)

and the integral in (5.17) as r - •, £ -,

Opn e-Pr2 .n (2"'f

fn r (B.(18)

Hence H¢ (r,a,s) in the far-fie]. .region has the form

SV 7 e - 7 r
S(r,a,s) "o . r (B.19)

where the denominator term is

L(y,a) - D(,, = C)

y cosc K 0o(b cosa) + 11(s) K1 (Yb cosa) (B.20)

where h(s) is defined in the expression (B.4).

We note that h(s) in the expression (B.20) holds good only

in the quasi-static frequency ranges, or when the wire is loaded

uniformly by external impedances. For very large frequencies

hl (s) in (B.20) should be replaced by hj(ýo,,s) where
0 

I

= 27rb(a + sr) Z'( s)w (B.21)
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APPENDIX C

DIFFERENT FORMS OF THE EQUIVALENT-RADIUS EXPRESSIONS
IN THE QUASI-STATIC LIMIT

It is interesting to note the different forms of the equiva-

lent radius1-3 of a circular wire cage derived in quasi-static

limit are one and the same, and check with the resulL obtained in

section IV. In the earlier studies,

(i) a cage consisting of conical wires equally spaced over

surface of a cone is studied, and compared with respect

to a solid cone of same characteristic impedance so

that there is only a transmission line node excited, 110

expression (4.8)

(ii) an equivalence between a single-charged conductor and

number of equally spaced concentric charged conductors

is studied based on conformal transformation,3 expres-

sion (4.8)

(iii) a wire cage antenna consisting of closely spaced paral-

lel and identical conductors placed around a circle is

compared to a single conductor antenna, so that the

total axial assumed current distribution is approxi-

mately the same,2 expression (4.7)

(iv) far-field equivalence of the canonical infinitely long

circular wire cage and hollow cylindrical antenna

structure, section IV, expression (4.7).

In the following, the expression (4.7) for the circular wire

cage equivalent radius

T(c) - [aAA ... A 13"N (C.1)
eq 0 ,231, l" N

is shown tobe equivalent to the expression (4.8)
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f (c)
A - 1 

(C.2)
A

Normalizing (C.1) with respect to A,

7(c) 11N
eqo0  aA 1 2 A 1 3 ..

A A N , j (c.3)

= [ = 1/- (C.4)

where the mean inter-chord distance is

R M A1,2 A1,3 'A1,N (C.5)A AN-1

The various inter-chord distances A,,,, n = 2,3,...,N, are defined

in (2.30). On substituting AI into (C.5)

(2A sin!)(2A sinl'). ... (2A snN1)

A-N-

N-1 sin() (C.6)

n=i

But we have the product expression, 2 2

N1N-1 nvr

sin(Nx) 2 N-1 TT sin(x + (C.7)
n-I

Hence, from (C.6) and (C.7)

= N o(Nx)lx
R sin•9 x'

nXcos (NX)x O

- N (C.8)
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SOORCE EXCITATION OF AN
OPEN, PARALLEL-PLATE WAVEGUIDE

ABSTRACT

In this work, we consider the problem of an open, finite-width, parallel-
plate waveguide which is excited by a y-dir~cted current source. The source
current is assumed to be confined at x - xo, have a sin (NV/2H) or cos(N7/2H)
variation in the y-direction, and an exp (iBz) behavior along the longitudinal
z-direction. Such an excitation can be interpreted as one spectral component
of a transversely confined source. The solution to the longitudinally confined
source problem can be subsequently constructed by an appropriate superposition
of the spectral solutions derived in this paper. The important question of the
excitation or non-excitation of the zero-mode in the guide is examined and the
resonance condition for a leaky mode in an open, finite-width waveguide is
derived.
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The organization of the report is as follows: Section 11

presents the statement of the problem we wish to investigate.

In SectionTI! we formulate the integral equations and present the

solution of these equations in Section IV. Section V is devoted to the

calculation of the vector potentials which are useful for the derivation

of the fields. In Section VI we investigate :he special case when

only the zero mode can propagate in the guide and derive the resonance

condition for leaky modes. Finally, in Section VII, we discuss the

case when more than one mode can propagate in the guide and present

a summary of the results in Section VIII.
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11. STAT•E • OF THE PROBLTk

In .his work we address ourselves to the problem of source exciLation

of an open vaveguide when the source is located inside the vaveguide. The

open waveguide is formed by two parallel, perfectly conducting strips:

-2L < x < 0, y - ± H (see Figure 1).

We vwil Investigate two types of sources, viz.,

Case A

3- -y(x + xO) sin /!a\ , here N - 1, 2, ... (2.1)

Case B

y(x + xO cosl 2UI e ,here N - 0, 1, 2, ... (2.2)

where the current J has only a y-component. The time factor exp(-iwt) is

implicit thr-ughout this report. We assume that Re$ > 0 and ImB 0.
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y

2H I urce

I z x

-2L.

Fig. 1

Geometry of the problem of source excitation
of a parallel-plate waveguide.
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I11. BASIC FORMULATION

We begin with Maxwell's equations:

71 x-- iw.jH- o (3.1)

V1 x H + iWCE - (3.2)

where

1 2 2 22 + 2

1 ax2 3y2 az2 3z2

The electromagnetic fields may be expressed in terms of a vector potential

function by means of the following equacions:

vl - (3.3)

"w V 1 . (3.4)

where A(1) Js a solution to the following inhomogeneous equation:

SVi(1 + w2•: -u -I3 . (3.3)

Since the excitation current has only a y-component we may let -(1) Ay

and express the various field components in terms of AM() as:Y

a2 ()

E 1xy.__ (3.6a)

iWCU a3y
a2A(l)

E - A Y (3.6b)
y y -iW- 3y2

Er Y J_.___ (3.6c)

aA(l) 3A(l)
Hx. _._• y H- 0 ;Hz- Y (3.6d)
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AM1) satisfies the Inhomogeneous wave equation:

_2((1) 2 ()V vAy + w t• Y - J -y (3.7)

We look for the solutions of (3.7) having the form A() - As ez. The reduced
y

potential A satisfies

2 2VA + kA--I ,' (3.8)

where k 2- - 82 and

in for case (A) N- 1, 2, ...

-(+x 0 coo'Nwy for case (B) N - 0, 1,2,...

Enforcing the boundary condition on the tangential E-field at the

plates, we have

A.0 ,-2L < x < 0 • (3.9)
3y y- -H, H

For mathematical convenience we initially assume that E has a small

imaginary part, with Ime > 0, intending to let Im * 0 after the derivation

of the solution is complete. We then have

k = 2 " 2 k 1 + Ak2 ' (3.10)

where k1, k2 > 0.

We next proceed to derive the solution to the problem at hand using the

Wiener-Hopf technique. To this end we define the transformed function 0 as

*(~y) - ,j A(x,y)e axdx , (3.11)

where a is tho Fourier transform variable. Since the region jyI > H is

source freewe have 0 satisfying the differential equation
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a24 y 2# , f- k2 (3.12)3 2 m

ay2

which admits solutions of the form

3 fry-H (3.13a)

#(a) - C4e"yY for y > H (3.13b)

with the requirement that

Ray ia (PT77 k - + c as a s

Figure 2 shows the branch cuts for y in ýhe complex a-plane. Taking the

principal branch we get

y a " Tkl .+ 2 and (3.14)

- -k a for I1 Ik< • (3.15)

In the raion interior to the waveguide, i.e., for IYI < H, the differential

equation for * takes the form

2 :il n 1-icx0  .. Case (A)

a=- \2H ] (3.16)

and the solution.may be written as [see Appendix I]:

$in Iry Case (A) N-l1,2,...
O(Y) c ceyy + C e-YY +(2HN ) N,••'-"-'

y)o 1 2 -+TN JH Case (B) N-0,1,2,...

(3.17)
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ir

branch.. . .

cut

brancha. ..
cut

Fig. 2

Branch cuts in the complex a-plane.

(

331



253-12 EP 1-27

with

-lax 0

TN 2 (3.18)

The coefficients c1 and c2 will, of course, be different for the cases

A and B. Since

3# 3A -'£x dx , (3.19)
ry -. y

from (3.13a) and (3.19) we have:

3•AI, "a c3YE-

a Is dx -cye (3.20)

y -H - 0

Lot

Ty-
3A ;A~ISfor.m~x(.2L(Z.21)

IAIy ' 3AJ .H l for 0 <x <

Then from (3.9), (3.20), (3.21),

-2L lax inx -(3.2)
r 24e dx + X2 e" dx- c3 Ye

or-

c3 Y 2e taxd, + x2eiaxd . (3.23)

Using the inverse Fourier transform,we finally obtain the representation of

A(x,y) for y- -H:
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-+- 2L]
r -- l -b M 0

(3.24)

Similarly for y > R Ve have:

F-2L
-..4ib L d a

-- +tb(3.25)

where

-k2 < b, < k 2

Letting y - + H, we obtain from (3.9), (3.17), (3.19):

/U
*• N~r NT

Y - (3.26)

1 2, YCle-1 a - Yc2eH+ N T rH C ( (3.27)

where -2L2
-1 H " e e dx + X eir dx (3.28) L

-2L,

12 1 *2 2'xdx + f X2.AOdx (3.29)

"where c1 and c2 are conetants, given by (see Appendix II]:

N NW1 a1 yH --. Co (1: sinh (y)I :

C1  2 sinh (2yH)y 1 2 + THN N-t2  - cos(- N si
sin (71 cosh (yH)J

(3.30)
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_ ~~~~E 1-27••,l yu

2 inh (2yli)y 1 2O 2V 21 i n w c s (

(3.31)

In the interior region I 'Y 8 we have

-+ib

A(xy) - 1 # *(a,Y)i) x da

w.+ib
2w-1 ebf ___

-cosh[y(y+H)l] - 12 cosh[(y-H)y V h (2•H)d

*+ib coo2 sinh (yH) sinh (yy a-n'x

2w 2- 4 b L ienL cosh (yH) csh (yy nh 2yH)

w]( 
-+-b

+2 3Lc° J 'xda . (3.32)

Imposing the boundary conditions:

A(x, + R + 0) A(x, + -0) f - g <x(-2L1or and 0' (3.3)

A(x, - H+ 0) A(x, - - 0) . ( 0 < X (

we derive from (3.24), (3.25), (3.32) [see Appendix III] for -e < x ' -2L.,

-2L i-21.
-2L (kl - timd + xXIK(*(k Ix C J)dc - 2L (*)1k - Cl)dC

- 0

0j'X 2 r")(kix - CI)dC - f(*)(x) (3.34)

0

and
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-1 -2L( * 1 4(L x - d. ~I+ Jl~ (1 *k Ix C cI>' - 4 '2K I) (Icfx -j
+ ~0 -

f xK(*)(klx - I)dC f(*)(x) (3.35)
0

where

K(*)(klx - 1) m ei 21 eia(c -X)do (3.36)

+1ib

Ki (kjx yl a±
- w y uinh (2HY) e~ ~do (3.37)

f N -1-ib fCos V2- tanh(yH) TN e-ax d

b sin cath(YH)

sfin INA -f+ib -
if TN xdc (3.38)

LCos T) +ib

FCLb (Jx ! tanh(yH) O'j o
x) N L 2 ýN

-+#ib sin ()coth (yH)

1 -sin -1-ib

2v f o i .. ai Toe do (3.39)

Adding (3.34),and (3.35) we obtain
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-2LJ .' lKj(klx - CI)dC + J •1 )K1 (klx - *I)d- f1 (x) (3.40)

where
¥1I(C) #1 #" 2

(3.41)

Zl(") - -X2

K1 (kjx - -) (* )(kix - CI) + 45 )lklx - 1) - e. J y sinh(yH)
-- +ib

(3.42)

(0 Case A
f1 (x) 1( (3.43)

I() (x) Case B

-ikb -'ib

(N)\.- W coth(YH) -lcax 1 (N) J~ ax
ý12-+ib -m.+ib

(3.44)

Equation (3.40) represents one of the integral eqaations we have been

seeking to derive. The unknownsin this equation are Y and Z and f (x) is

a known function related to the source.

Next we subtract (3.35) frou (3.34) to get:

-2LJ 12 (M)K2 (klx CI)d& + f Z2 (E)K2 (klx -t)dr f 2 (x) (3.45)
-• 0

where

#+ *2 (3.46)

Z2(C) - X1 + X2
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-4ibK2~(klx"•)"[1'(lx-•)-n-* kx -C1) 2 cosh¢,.Y) do

"" ~(3.47)

((N) WCase Af2x) 2 Case B (3.48)

-+ib -- ib
N N ____ -ci -. (sin, To dci~(N) (x ~ Cos j TN a(y)e d-; n 7  N

(3.49)

which is the second integý:el equation we have been seeking. Thus,in sumary,

we have reduced the original problem to that of solving a pair of integral

equations (3.40) and (3.45) with four unknown functions, viz., t(F). Zr),

y2(C), and Z2(0-
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IV. SOLUTION OF THE INTkGRAL EQUATIONS

As a first step we rewrite the integral. equations (3.40) and (3.45)

as:

-2L f ((x) -a<x<-2L, O<x<-

Y1(-K1(klx Cj)d4 + Z1(C) lx -I)dd -2Lx0

(4.1)

and

-2L 22. .f 2 (x) -,<x<-2L, O<x<a

SY2()K2(klx - C)dC + Z2(CK2(kin CI)dC
-a 0 W 2x<

(4.2)

where we have deliberately introduced two new unkndwn functions, viz., e1 (x),

e2(x), in order to extend the range of x from -. to +. This is important

for the next step which is to multiply (4.1) and (4.2) throughout by

ezp(iox) and integrate with respect to x from - to -. This gives

-2L

- Y1 (V)el~ dCK 3 (Cz) + ' Zl(C)e i(dCdK3(0)

"0

-2L 0 -
- W f(X)iedx + j .1 (x)e.Xdx+ f(x)eaXdx (4.3)

- -2L 0

and

-2L

J Y2(0V 
1 ad&.K4 (a) + f Z2()eICEdC.K 4(az)

0

-2L 0

S f 2 (x)e iaxdx + e2()e iu'dx + f f2( elaXdx (4.4)

. -2L 0
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where

Oy'ru e*YH

Vi3(Q) rh (yH) 4 Y cosh (YH) 14.5)

are analytic in the strip -k 2 < Ima < k2 .

Defining the transforms of the unknown functions in (4.3) and (4.4)

and indicating thair domains of analyticity, we have

, +(a) = -Zl(e dC (4.6)

0

-2L

0 - J Yl(V)eia(C+2L) dC (4.7)

•+(CO -f z l(0)e adC (4.8)

0

-2L
(•a) f Y 2(C)eia(C+?L) d& (4.9)

where the functions ,+( ), Y+(o) art- analytic for Im > -k 2 and ,(u).

*_(a) are analytic for Ia, < k We can also write the transforms of the

known functions f 1 (x) and f2 (x).in the range < < x < -2L as

-2L

S(a) f f j(x)etaXdx e- e-t2Lej..() (4.10)

where j 1, 2 and

-2L

Hjla) f f j(x)eia(x+2L)dx (4.11)

Likewise for the range 0 < x < a we have the transform
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,J+(a . fj x()"•'Gxd (4.12)

0

where

0 Case A

R l±() ( (4.13)

Lt (a) , Case B

where the superscript (N) is associated with the excitation function and is

defined in (2.1) and (2.2). To obtain the expressions !or H (W),

we have to calculate the functions f (x) for two cases: (a) - x< -2L

and (b) 0 < x < -. We also need to perform these calculations for N both

even and odd. For Case (A) we need to close the contour with a semicircle

in the upper half plane, whereas the closure for the second case is in the

lover half plane. Substituting the results of these calculations in

(4.12), we obtain the final expressions for ý(2L) and W(2 11-1) which"i a ±
read:

La2L X -± (lLt 1W(U) (a) L U [- •* 0 + [ ± iua(• + • \ (4.14)

in. 0,,1,..

-(a. ) t(2-t2 10 1 k)

1,2,...

(. Qi(2L-xO) ' 1  2JI n 2a -(.1/2 a,')
n n n

e x + FO0(4.15)
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Note that we have neglected the exponentially decaying terms by retaining

only n1 terus in the summation. The integer n 1 satisfies the conditions:

nl• (nI +l)n-- < k , > k (4.16)IR H"

We can also show that

S(N") (a) Case A2±
H2±(a) = f (4.17)

Q, Case B

where

n2,.2 .) 1 1,,
2± (1)L n 2

2" ) an-112 - \1/ 1

1a 1,2,... 1 (21.-

U~o e n-/ LiJ ) (4.18)

and n2 is determined from the condition

(n - 1/2)c (n2 + 1/2) (4.19)
H H

and

-M +11 1 ei t-1/2 0 + eI i-1/2  0~x)
2±±

£~ 1~~***(4.20)

Utilizing the definition of various transforms,we rewrite (4.3) and

(4.4) as:

S-i_2L 4- - y2 H Hl(a)# I(Q) •- [ *2L H1 .(a) + Hl+(a _f21Wt1 (C)

(4.21)
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and

f'ia2L *-W + *+(a) - YM2(P)C,(a) - le*-i2L 2 -(a) + t 2+(o yM2(() (4.22)

where

0
4 (Q) fc 0 1lX)eixdx (4.23)

-2L

0

Y() J e2(x)e'axdx (4.24)

-2L

M (a) a e-¥R sitih(yH)
yli (4.25)

M20) - a-cH cosh(YH) . (4,26)

The next step is to factorize the functions M 1 (a) and M2 (a) in the form of

products,

Nl(a) - M1÷(a) M, (O) (4.27)

M2() M() - 2 ¢(O) (4.28)

where Mi+(c), M2+(&) are regular and non-zero in the upper half plane

T -12, whereas M1.(a), M2-(a) are rpgular and non-zero in the lr-der half

plane r < k2 . Then, multiplication of (4.21) by

e+ia2L

(a - k)M1 (c)

and (4.22) by

Ia2L

ct-k M2 -(6)

leads to the following coupled equa,.ions in the transform domain:
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(a) ÷+l+ a) 1" O-(el+ .(a +k) 151+(a) 0 (a) e/2(a - k)M 1.(Q) (a - k)Mj.(QI) 1

(1+k)RMl+(G) H1 _()+1 +k)HH1 (la)H1 + (4)e2L (4.29)

and'

*- .() +(Q)e LaU
. + r + k M+ 00 a)a2

v (2.(2) 1 ).(o)

Act -+k M2 11(a ) v's)e
• ~ ~ ~ ~ ~ -Q + Q+ k +(=)H2.()÷ • ÷•"+(a)i2

(4.30)

The first tnrms on the left.hand side of (4.29) and (4.30)are regular in

the lover half plane, whereas the third tms on the left-hand side and the

second trmson the right-hand side of (4.29) and (4.30) are regular in the

upper half plane.

To solve these equations we carry out the decomposition

a i k2L )+() - R (a) + R.(a) (4.31)
(a -k)M 1 (Q) +

(e+kQHM 1 +(a) (l_(*) + S1(a) (4.32)

4in2L *+(a) - - +~~~~~A - k M2-(Q)- l) .)14.3

"/ 2+k M,+(a) H2 (a) - s2 + () + S2 (a) . (4.341

Using the method of factorization we obtain the equations:

#-(a)

(a - k)NJ () + R.(a) - Sl_(a) - (4.35)
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I+ Q _(c) - s 2 () 2 -2 (4.36)

where

id+-. iC2L

R..( o ) - - i d n ( .k ) N . )( C -( . ) d • ( 4 . 3 7 ) •

id+- ie2L
Q .( C ) -f e( .

" 2.-" dC (4.38)

~- 'r :
.(d) +- * k H2 (c) HM-(H)

fC - dc .(L3 9 )
id-rn
Id+,-

S' (a. 1 I • 2+() 2-(¢

- " f C dZ (4.40)
id-r

S< d < k 2 p T I.•,

After multiplying (4.21). by I/[(a+k)Ml+(ct)] and (4.22) byll/[Pri+km Ie+((a)]

we obtain:

-. + +(a)e'tIc2L_ (I-
(,+- k. (m- k)HM_(a) 0 (a)-e't LHi.(a) (a -k) Mi (a)

4(C J-(

+ Hl+(ci) (c - k)HML (a) (4.41)

and

•-•_____• •(,( + + -+

re +k M 2.(ct) *AC +k M2+ (ci) 2- 1

"e -I'2L H2- (Q) 1-kM (a) + H2+ (a) /, k M 2 _(G) (4.42)
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Note that tha first terms on the left-hand side of (4.41) and (4.42) are

regular in the upper half'plane; the third *enrs on the left-hand side

and the first terms on the right-hand side are regular in the lower half

plane.

We now use the decompositions:

S4a2L. W - U+(Q)Y+ U (a) (4.43a)
(a + k)Ml+(a)

Siea2L.()

A -k +(a) + e (C) (4.43b)

R -+(a)(a k) HM1 _ (a) =Vl+(a) +V1 (a) (4.43c)

S2+(a) k M2 .() - V2+ (a) + v2_(*) (4.43)

Substituting (4.43) into (4.41)and (4.42) and using the Wiener-Hopf

technique 110,111 result in the equations:
S%9(a)

(a + k)M+(a) + U+(a) - V +(a) - 0 (4.44)

S++(a)

e+(Q) - 2+(0) =0 (4.45)
/a-+k M (a) ++a 2

2+

where
ic+_ e- iC2L# ( W

U ((a) ( + k)+) -W) d) , (4.46)
2wi i

ic+- -i¢2L

9+(a) 2 - d;, (4.47)
Ai j-+k M (0)(icW 2+
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• (+() - k2de , (4.48)

Ic-.

lc}-H2+ (C) 14- M2-(0)

V2 +(a) 2w J 2 . dý (4.49)

Ic-.n

-k 2 < c <T .

Ine above manipulations have resulted in four coupled integral equations

(4.35), (4.36), (4.44) and (4.45) each of which contains tvo unknowns. We

now proceed to derive a set of new equations each with only a single unknown.

To this end, we replace a by -a in (4.35) and (4.36) and C by (-C) in (4.46)

and (4.47). Using the representations - -+k i r --k, /•-a- a'k --- k

adding and subtracting the resulting equationis and defining

S(a) #+(CO I -=(--a) (4.50a)

[S 2÷(a

LD2+( *() ( a.(-.) 
(4.50b)

We obtain the two sets of coupled equations

+ 1 id+- (C e i42LdC

ID (C (a) +2iMiC) i f k) (Mc +LD+(a (- +kId() -2• [o 1+(cj (€ - k)Ml_(()(C I a)
L -+1 id--L "j.(11

- [+(a) S'(.1.(- * 0 (4.5])

r ~ ~ 2 + a ~ ~ ~ ~ l d + - [_ _ _ _ _ _ _ _ _L2+ �( ad 1S 2+(••+) aei_2Ld_

2:1 d- LD-2+(C /ý-k M2 -()(0C + a)

i 2+0 (4.52)
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It is shown in Appendix IV that for k2L >> 1 the incegrals appearing

in (4.51) and (4.52) can be evaluated in a series form as follows:

id+- 5
( S 1+(C eiC2LdC

.id [Di+(C) (4 - k).(0)(C + a)

Seik 2 )1+ (k) + e-+ 3/' 2 (/ + k)W 12(m + k

iD1+(a + k) + l

ian 2L

n + (<CI Ml+(,a')(anj + k)

+ a( + a) (453)
n-1 /.+(at') n

and

id+- r ( iC2L ,

1 S t + a dt

ae" - 1 --i2m+ki e M2 "(k)

2 ia" 1 1 22L

+ ( a 12  ( a, n -l / ' r - I
2 S2+ ( a' l/2 ) - , 2+ ( n .1 /2) 10'n . (4 .5 4 )'. "• + -1" a-l [D2+( ;.1/2)j (o o;1/2)"n'.1/2 4.

Substituting the various series expressions given in (4.53), and (4.54) into

(4.51) and (4.52) gives:

[ Sl+(a)1 ( [[s+(k] "ik 2 L.,+(k)

D- - 1. ( k a ++k

+ ( 1 11*i 4w 012k / 42 7 (a +k) W C-12L(a + kJ)
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ic;+2 
+ k) V (a) +7S1 (--a) (4.-55)

+~ I Iau+s
n1 L•D+(on), ;< + an') "+ .,

and

F(a) Ira + k M2+Q e 3 1  -~ 1 [-i2L(a + k )

C2+ J

a [k 2+(k + ni-

"*" 2+(" (k ) L i n n2 LD (an1I2)1

i*' 2L _____

a n-1/2 M ,W 2 )a + k
2 + n,-_1/2) n-+ [± iV2+(o) + S2_(--a)I

(4.56)

Out next step is to obtain the expressions for the vector potentials which

deperd on the unknown functions 0_(a), #+(a), *+(a). *_(a), and which are

in turn expressed in terms of the functions S1+(a), Dl+(a). S2+((a), D2+(a).

From (4.50) we have

0' tc(±) Is [l+(a) 1 Dl+ (a) I (4.57a,)

-S2+(a)± D2 +(a) ] (4.57b)

Changing a " -a in (4.57) yields

#_(Q) =[s.+(-o) Dl+(-a)] (4.58a)

*-(a)=-S2÷(-a) D2 ÷(-C)] . (4.58b)

We can rewrite (4.57) and. (4.58) as:

* (a) -Sl+ (-a) ± D +(±!,) ] (4.59a)

() S2+(±a) t D2+(±)J ] (4.59b)
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t 2 a± ak

1 -04 * i2i k /2-L~ (a ±k) W- [[;2L(,m i k)])

\ To obtai~n1 [Dhe +xrlso foi+(an) ]eM~ a)(d i+(),w sdt uslut

n a2 k

•~ ~( (1SS "3/l •2 (an'I n Mk(*) 0'Ii2( + k)

2 V ' .4 1l>

+2 •L-.-sJ. (4.60)

and

-. V,.(a~in L'I 2kj2+

;1i3/4w /rfL ik2LH2 (k
I; i2L(a l k)]e k2+

im--1/ 2
2 ID + S D0, . m 2

ni- an-1 / 2 (a n-1/2

•+2 L~ - .](4.61)

The last two equations provide us with the expressions for the functions

0 (a) and * (a). They depend on the group of constants [S1+(k), D 1+(*),

S2+(k), D2+(k)] and also on ISan) D(+(an) .S2(a), 1) 2+(an-/21].

( . f
3 4 9
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We can express the first set of four constants in terms of the ones appearing

inside the second bracket. This is accomplished by returning to (4.55) and

(4.56) and substituting a - k. The resulting relationships can be further

simplified for 2kL >>' 1, i.e., for vine plates,by i.troduc:Lag the asymptotic

forms

(- ( for :a -, -w < art a < w . (4.62)

We then obtain the following desired equation relating S1 +(k), and D1+(k)

with S1 (+,•), D1 +(a,*), etc.,

rs1+(k) [D___ r i 2L
LD {4  I S(a 0) 0 n l+*M

M+ ( 1 T(k) " S al .

- 3}n'
+ IVS (k) (2k) (4.63)

and
( r., i* 2L

2 - './~ 1' 1 ~2 n-1a/2 ~ 2+ -1/2)

LD2+(kJ] 2 n 1 LD 2+(a n'-1 2) %n-1/ 2 k +a'- 1 /2

whr +i L 2-(-k) ± iV2+ (k)]} 
(4.64)

where

T .(M(k)J2 ik 2 Le 1 (4.65)

T2 ' [M2+ (k)]2aik2L a1/4 1 (

The constants S1+(a;), Di+(s/). S2+(1*1/ 2 ) and D 2+(a 1/2) Sisfy t set of

algebraic equations, which is derived by substituting a - a- into (4.55),

'2;P-1/2 into (4.56) and using the asymptotic representation VW1 (s) and
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(4.63) through (4.66) [see Appendix VI These equations take the forV,:

?or S(+(a-), D1 (Q'):

r -) nj P(')± where M' 1 ,2,.. .,n1 (4.67)
a w l D• , ., m, m .. m

1+

where

CL-) -)T- m (u on- + k)

G )" a t +- J1 (4.68)

Un m n (4.69)
m 0 a 0 n

0 Case A (4.70)

a ()± Case B

'() for N-even:

L 1 (.)K(j UkT (a + k)(a' + ki)

(-1) H 1+ 1 + m
=,2t 71 L W + •L +

[ica Xo icaj.(2L-xo)] 0 (4.71)
• +_• "-0, , ..

(ii) for N-odd

,+1 Mpa)(2 Z - 1) 4 M +(k)
-&,2t- 1 ) - \ *. 1 (2Z-T)2

ikx ik(2L-xo)j 2kT- 0T + W + k)

M+al') a)] .X0 ia'(2L.xo (4.72)

I. 1,2,...
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For s2+ K(.. 1/2); D2+(*',,_/2);

n 2 ~2+(G;-1/2' I G(2)1 6nI *( 2)±
G an am p (4.73)

L.2+(an-1/2)-

where

*, .l/22L

Mt) cl . 1/•_12 + k M2 + (O,;. 1 12 )M2+1(_1/ 2 )e

n-1/2

2kT2 1 *- (.1/2 1
21 o + 0. (4.74)2 (a (o-1/2 + k)"O,•,.1/2 + k I-/ -/

Case Ap(2) / N (4.75)
0 Case (

(i) for N-even:

2)± 2(_l) n 2K2+(2n'-l /2)• .,2, 2+(*;-1/2)"
"2,2e -1 (n- 1/2) 2 f1/, -(U(n.- 1/2:)]

1-1,2,...

" ;-,1/2 n+' ";-i/ 2 + 2+k 2  1 T

'L ;-1/2 + *-1/2) 1 • T2  v. +k/a .- +k

* ± -a1 / 2xO ie n-1/2 (2L x0o] (4.76)

(1t or N-ndd!.

?(2)t . ._()I+l M2+(*; 1 / 2 )M2+ (*'Z-I/2) [r';.112 +k "i-1/2 + k

m,21-1 i-1/2 L *i- 12 -S1/2)

1-1,2,...

1±2 ioild "'i-1/21 t T °,-/+ •-/ + k
S.....( 4.7 7 )
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The 41+ and M 2 + functions appearing in the last few equations will now

be written explicitly. To this end, we return to the definitions of H1 and

M1 (a) -y sinh(yH) M+ (C)M (a) (4.78)

*(m) -- yH cosh(yH) - M+(a)H2_(Q) (4.79)

where [see 110] pages 131 and 175]

lain) .H ep -l C + In +_a
"- I

*exp L In e , (4.80)

n=l

MH.(a) - M1+(-a) , (4.81)

I iaH
M2+(a) - .cos (d)exp( CLiCc+ n(~~i1

aH
i~Y 1 rr 1 ____ (n-1/2)w

* exp L w tn + e (4.82)

-H2(a) M2+(-a) . (4.83)

Substituting a - k and a = a' into (141) and a = a into (143), we

-obtain:

m k)- exp .4 [HKi C C+ In( + i ])
kH

n,,n-] 1+ Eale (4.84)
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,/'+(C' exp r1 Cla + I f2-

I/ sin + ma a

* x,:S4I J f + e ., (4.85)

2+a-1/2 "-oll) e *;/2 -c+ tn + 21i

* ~~~***((i -~.. + (a 1/2)wr

'e2) a-1/2

(+- 1i 2L' a (n- 1/2)w (4.86)

which are the desired expressions for M 1+(a ) and H2+(.l;/, 2 ) we were seeking.
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V. CALCULATION OF THE VECTOR ?OT3ITIALS

From (3.41) and (3.46) we have:

1 2

A2 Q I¥ 2() - ¥i(0) (5.1b)

x- 1[Z2 (M) t z1 (M) (5.1c)

-- = -z 2 W) - z 1 (5)] . (5.1d)

Substituting (5.1) into (3.28) and (3.29) and using (4.6) through (4.9) we

obtain:

e ' eia2L. (a) + #-(a) + a) + IW(a)] (5.2a)

-e2 1 +-ia2L (a)- () +1 )- (5.2b)

It is known from the theory of the in.egral equations that if an integral
b

equation g(y) f f g(x) K(y,x) dx + f(y) has a unique solution for every
a b

f(y) then the inteEral equation g(y) - f g(x) K(y,x) dx has only a trivial
a

solution g - 0. In view of this, we obtain:

For Case A:

S +(a) a.0, D1+(a) - 0 and frou- (4.50) #+(a) - 0, .(-o) - 0.

"Furthermore, by substituting a -a we have #_(a) - 0.

For Case B:

S2+(*) - C, D2+(a) 0 0 and from (4.50) #+(a) - 0, .(-a) - 0.

Ali 1, substituting a - -e we obtain * (a) - 0.
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and frou (5.2) f " 1 e i12L*-(o) ( a *÷(o) Case A (3.3a)

T+ 1 Case B (5.3b)

12 ( 11 Case A (5.4a)

-11 Case B (5.4b)

Next, inserting (5.4) Into (1.32), we obtain the expression for the vector

porential

S+ib 9 i.h(.Y" ) -iox

2w f F I cosh(yH) .1- do+
--+ib cosh(yy)

a inh(• H)

L da

J2- Ui -CsN n yy -iox
(I ~ 2cof.h(yH) TIpTe d

4H Ncsi YL 2 s'in-h(yH)

I+I
+2 i (1Z TNe Gd. (5.5)

LCosfzui --+ib

To calculate the integrals in (5.5) we compl1te the contours by semicircles

in the proper half planes. Integrands connected with Case A h.,ve poles in

oa t - ./2, and integrandi connected with Case B have poles in a - k,± a'.

356

S-----. .-.----. ,1.-.~--~---**~ ....- ~-..-



EP1,-27 253-37

The result: (A)

A(x,y) (Ai (x,y) Case A(5)
(B)

(.~AM (x~y) Case B

(AN(y) i U2 sin((2m- 1)wy/2H3
Ai(A~)()14

aw aM-/

N - 1,2,...

[*(N) )e +2 (N) e 2

+QMl (z.y) (5.7)

Q(1) (X2Y L (lm sini (2m -1)Iry/2H e -/ xif

(5. 8a)

Q2- X,) 2ij-/ sinl(2.t.-1)ITy/2 H~ i1/2 1x2 0  (5.'Sb)

and

AM(B~) (N ) i-+
Aj X,) Q +(k~-'-"+ #()(-k)IkX2Lh

2H a, +1 ICS(m/ u

+ (-a Is + Qi 2 (X,Y) (5.9)

where

2L 2ma Ho~w~ (5.10a)

Q (2) 1XY i(l +1 1 e k

-(QL-1/2)An) -I. -
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The expressions for #(N (an) -* and 40, a are obtained from
(4.60) and (4.61) by subatituting SI(k) and D1 t(k) feom (4.63) and (4.64),

a - t k,± a' t *c_-1/2 and using (4.62).
We (N)( u1) (±i "-•2 "" c' .,. (5. )

We obtain: ( N) -/2) + -(N) -i .-,)

vhere
(N) i . / 2kT2

*;l IZ 2 2 +- k 2+r;n-i/2Z)(U;-1 + k)H

Su+ 0 n..1/2,2+,i/

02 2+ (a'
7- / n-1 /2) 2 ( n 1/2 -o w 0 - 1 / 2 ,( + " n- 1 / 2

n 2  -an-1/2 2L S(N)• + (an'-l/2) "42+(CL'n-1/2)

+(1 +T2) ni a' A
n-1/2 + a,-1/2

H n.-1 -1/2(oin-1/2 + *n-//2)

(5.12)

(2t) a-1/2, + ÷ rn.1/2 + k M2+(r-/ 2ut

A- 1,2,...
S 2kT2 n2 22,n 2 ( n 1 )2

(0;-1,/2 + k)(1 - T.) nol (n-'1/2) __l/2 (r/(n-1/2)2] +

* ([TI ii-1 xo L2 tal/Z(2L-xo

n2 + nl/2k M2+(an.2)

n-1 (i- 112) (1 - (4-1/21 1/2 + * /2~') n-1/2

* 0F1 :c-1/ 2xO +[0 1 a-/
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2+_-1/2(a ./)
(2L-) k 2

AL" 1,2,...
-2 k T2 e 'i• - 1/ 2 7-0

W=•-1/ + k) (1 -T + k

1 .t j-1!2x0 + -1eol /2(2L'x (5.14)

(N) (t k) - (- (N)+ k) + (t) (+k) (5.15)

where

ia"2L (N)"n 1 e n D - ±(N)(' •
#(N) +- (k) kM +(k) \± T - T1  n 1 in t 1

11 1+ i - (N) 1+L 1n

nUi n S ni ef2l(N) (.)D(N)(00 H (c&)• S+ ( -)H+n) • 1 •+ (n) 1+ J1

Ik n n-1 n .

2k L.1. __________(5.16)

#(2L) (± k) 2k- 2 (-1) HU 14l+(k)Ml+(cz)( 1 e tcjXO~

(1I T) -T2
L -0,1,1,....

,+ Ij( 2 L x 0  

( 5 .1 7 )

#(21-) kk) - 2k (-19 HIu(- , 1+(k) 2 Mk+(k

±2 21-T1 (2%-1-)'

ikx + i -T) I T ik(2L-x ' 1i H Wo)
eji 0kx + 7 1+ n

1 T1 e(a

( i •'0 + Ti j' ia; (2L- x )) (5.18)

359

I?

I4



253-40 EP 1-27

*(N)O ± ) (N), ) O .(N)

1±•1 ±2 t

where

i 2 .2L
n n (N),(N) 1+ 2T 1~ n 1+--1 na

t L"2L

1 1+ 1 n 1+ n____

S  e I ) D (N) () (m W + k)

1. n 1+ n 1+ n n (5.20)
(O m + 0)

n-I f

0 a(2t)1 -x0(Q) UT 1a + kHg+•• (52

( -l) ( -1) -( )"(ek+ )

__-)" ¢ ,+ k) (1€T1 ) LT1-
Z , =1, ....

+ e + (a+k a. e

"+ [ 
m )+ (

a') (-1) xHu (2 W + k) M ' 2kT 2

±22 m 1~k ([r e k + [ m . i k(2Llx))

H__ (k)_________ 1T1  i k(Lx 0)] ic(L- 0~
- 2 1+ e 0 +j e o+1

k6



EMP 1-27 253-41

4 K(k) II.1 ikxOi(Lx0
+ ~ IH e:1 i ))

"n, W. + k)M +(a• I iaxo e+[ '(2L-A.)

n-l 2. a - ((Q, - 1/Z/n)2 (u+k (a' 1 a'x) 00c'(LA
n i T en e n

(5 . 22)

This completes the derivation of the vector potentials. We now write

them explicitly for the two different excitaticrs, viz., Case A and Case B,

and for the zero mode as Case A:

(A"A'(xy) - 0 (5.23)

Case B:

1) N-even

AA(B) - iu 0 iI(20 ) -)ikx + (2t) i(k) 2
A2, Ix.y) •-• e 6 + M keix + . (-k)etkxz~
2t,0 xy 2k Z. 4kH LI-

Z - 0,1,2,... (5.24)

2) N-odd
: ~ik x+xol.

(B) xy) 9.1 1 e

"2Z,-1,0 iw('1) w(2.-l) k

.= 1,2,....

~~:i LU-1) kikx + (UZ-I)( ik(x+2L)J (.5
+ We +.t (- (5.25)

where

(5.26)
3610 Z
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VI. INVESTIGATION OF THE SPECIAL CASE WHEN ONLY THE ZERO MODE
CAN PROPAGATE IN THE GUIDE AND DERIVATION OF RESONANCE CONDITION

from (5.15) through (5.18) we have

AM(x,y) - e •klx+ 01 L 2u ( (k)] 2 ±Cx0 L(Tlxox) (6.1)

A2M o(X,y) " 0 t - 1,2,.,. (6.2)
2Z,O

AM( x Y) iu(-l) 1+1 iklX+Xo i+ 1)1Q 2 ekz0
24.-1,0•xy w (21L-1)k e (21L-11k [1+()2k0

.- 1,2,....
'L(Tlx 0 ,x) (6.3)

where

• "'-'-ix 1 1 - Tlelk2(Lx)ikx
L(T1,Xo'X) -- ]eIC X

+ Ll T le- k2(L-x 0)] eik2(L-x 0) L k(x+2L)\(.4+ - Tl ee e . (6.4)t

If k(L - x0) - nr vhere n - 0, ± 1, ± 2,...,± n3; n3 .atisfies inequalities

n-'Ln3k<
(6.5)

(n3 + 1) L

or

x0  L - k

Then

( . (1 + ) [eItkx + eik(x+2L) (6.6)L( Io'~ xo L (1 n + T1) G

0 k
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and the resonance condition is

S( -T (6.7)

"if 2k (L-xO) , (2n+1)It

or (6.8)

2k

vhere n 0 0, + 1, +.., ± n4; "n4 satisfies inequalities:

(2n4 + 1) IF

2k <L

(6.9)

(2n4+3)w
" -. 2k >L

2k

then L(T,x 0 3 x)j L (2it4-1)i 1 T ikx -e ik(x+2Lj (6.10)
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and the resonance condition is

T1i I . (6.11)

Thus, in general, the resonance conditions are given by

T 1 (6.12)

We can rewrite (6.12) as

S[MZ(k) 2 '.k2L
M•+(k) e f 1 (6.13)

where
-iir/4

f 1 + - Hk (6.14)

The expression MN+(k), as given in (4.84), .can be simplified for the case

when only the zero mode can propagate in the guide. For this case we have

+) expi 1  C + 1n(k) + i]+ I -arcsin( (6.15)

Let us investigate the case

(-) - (6.16)/; kL

returning only the terms with an accuracy 011]. We then have

1+ 1 (6.17)

The resonance conditions for this case reduce to

exp (~2 !Lk 1 C + i n (-N) + J 2kL' 1 . (6.19)

364
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For the choice of a positive sign in the r-h-s, of (6.19) we get

" 2i +i2kL +1 uexp(12m) (6.20)

or

2 [1 C + n12n h + I + 2kL 2nw (6.21)

where m is an integer. Since (6.21) implies that m >> 1, we can rewrite it as

E -M (n-) + 1- C + in2 + i (6.22)

where

U.kL . (6.23)

Solving (6.22)'by the iteration method we obtain:

in ) --. (i-C+ ÷n2 + i) + In

(6.24)

and

k(+) + 2+ (6.25)

where

k+ mw m nt)L - (1- C + ln2) (6.26a)
L L

k2+ - i- (6.26b)

In a similar manner for the choice of negative sign in (6.19) we obtain

- 1m ÷•)w - in - (1 -C + 1n2 + 1L) + Oti1n(L/) (6.27)
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and

k( k 1 + 4k 2- (6.28)

where
(m+0.5) H. L H.

Sn () - (1 -C + 2) (6.29a)

k2  L'2  (6.29b)

366
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VII. INVESTIGATION OF THE GENERAL CASE WHEN MORE THAN ONE MODE CAN PROPAGATE

" As a Cirst step we show that the resonance condition is no longer given

by the conventional formulas T1  * t 1 when more than one mode can propagate

-, in the guide.

Let us consider the case T1 = -1. Then from (4.67) we have

nl exp(i" 2L)nin M1 +(on)
n M. - IV- 1+(k) - _(-k)) (7.1)

n-1 n

where we have used.

$1+(;) -nlm + n2m(l + Tl) + ... (7.2)

Inserting (7.1) in the equation for 0+(k), we obtain

0
+(k)- 01(1 + . (+.3)

It is possible to show in the same manner that

04(-k) O[(1 - T1 ) 1 (7.4)

The resonance conditions are given by

Case A: G(2)± 6 - 0 (7.5)

"Case B: G 36 7nI (7.6)
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VIII. SUMMIARY OF RESULTS

In thip viork we have addressed ourselves to the problem of a

finite-width, parallel-plate waveguide excited by a source located in

the interior of the guide. Two types of sources have been investigated,

viz.:

Case A:
S, (x+xo0 sin 2H. e NZ

Case B:

J y (+xo Cos ?11) iB', , - 0,1,2,....

We have assumed that the current has only a y-component and that

8 is real and greater than zero. Us'.ag the vector potential approach,

we have reduced the original problem to that of solving the inhomogeneous

% "wave equation (3.8) together with the boundary condition stated in (3.9).

Next, two coupled equations for four unknowns (Y1 ' Y2, Z1 and 2 ) have

been derived where these unknowns are related to the. vector potential

at the extensions of the parallel plates. These equations read

[same as (3.40) and (3.45)].

2L
f Y (EI% (klx-EI)d& + f Z (&)K (kjx-&)d& - f (x)

where the functions fi(x) appearing in the r-h-s are related to the

prescribed source and are given in (3.43), (3.44), (3.48) and (3.49).

The kernel functions Ki appearing in the integral equation may be found

in (3.42) and (3.47).

* 368
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Our next step was to solve the integral equations using Fourier

transforms and the Wiener-Eopf technique. The results for the vector

potential constructed in this manner are given in (5.6) through

(5.22) for both cases considered. We have shown that there is no zero

mode excited in Case Aand in Case B this mode is excited only when

N < 2Mk/1, if N is even. For N odd, the zero mode is always excited

in Case B.

An important result of the analysis presented here is the expression

for the esanance condition. We have shown that this is given by

T (M (k)] 2 •12kl f +1
"\1

/1 where f 1l + e4iI/4 (.-1/2 Hk/Ik•

and Ml+(k) is given in (4.84).

Rk 2 1
For (-k) 2 1< 1 the function f above can be replaced by unity and

the resonance condition is correspondingly simplified. It is interesting

to note that for the source.located at x= L - nw/k the resonance

"condition is reduced to T1 - -1 whereas for x0 a L - (n4)7 the
ký

same condition becomes T - +1. In general both the plus sign and the

ininus sign are admissible for the resonance condition. Equations (6.25)

and (6.29) state the resonance condition under the constraint that only

the TEM mode can propagate in the infinite, parallel-plate guide. For

the mor. general case, the condition for resonance is given by (7.5) and

"(7.6) and an examination of this reveals that T + ±1 no longer represents

369
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the resonance coaiditicn for this general case. We point out that the

resonance condition iz useful for solving the complex (leaky) modes

in such open vaveguides.

Ue also draw the attention of the reader to the fact that tCe

resonance condition derived herein is in general more accurate than

that Siven by pravious workers. We sh,.'v, h .,ever, in Section 6 that

when the condition on the waveguide p-rameter8 as expressed by (6.16)

app lies, the resonance equation reduces to that obtainable by multiple

reflection method applied to semi-infinite parallel-plat waveguides,

a technique that has been used in the plst by other work rIs (7,81.

3704. 
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APPENDIX.L

The general solution of the equation

2 y (y f(y)(.1
ay2

*(y -e 1 ey+ +4 f f(C) siphty(y & (Id&)

0

For

M~CI

we have

*(y) -C ley + + 2ey 7N Lcos __ (1.4)

where

TN m2 + 15
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APPENDIX II

Write (3.40) as

ClYeYH - C2 Y9YR 11- F1  (II.la)

C1 yi - c22 yey 12 - F2  (II.lb)

vhere

F [ (11.2)
F1.2  TN 2HR

The colution of the system equations (II.1) is

S
1 -H .~ cos ( -s inh (yH)

2sinh(2yH)y 12 2 -N ssin( T) h (11.4)
c 1e~H eH TNx 2 (11.4

372
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APPENDIX III

The continuity condition of the vector potential across the boundaries

- � x -2L, 0 x m for y - +11 and y - -H is given by (3.44). Substi-

ttzting the expressions for the vector potential for all three fields frcTn

(3.38), (3.39) and (3.43) into (3.44) and chanjing the order of the

integrations gives

-2Lf *1IC��(kIX - �)d� + f h1K��(kJx -

-- 0

-2L 1 J - �j)d� - (111.1)-f *2 K��(kIx - �Id� - 0 h2K�i(kIx 
1
1,2(x)

where

+ib ex (2Hy)'

* t f I ia(�-x)

-w4.ib ysinh(2H'y)
L -

a+ib F; Nw 1 - -lax
� 12(x) - - N f cos(7)tanh(yH) TNe

sind�L)coth(yH)

-'.4-lb k. .1
Nw '.4-lb

2w Nw jJ Ne�i�Xd� (111.3)cos(2  --+ib
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APPENDIX IV

We are Interested in calculating the 'ntegrals:

id 4 l

Multiplying the numerator and denominator by M 1+(4), we obtain

1 (C-k ;+a)sn(H y

NTid-m LDI+(0.

We have branch cuts from k to Rek + i- and from -k to -Rek i-i..

Closing the contour with a semicircle in the upper half and using the

theory or residues,we ge-.

[e~i i;2L eYR M(~ dý n 1 [+ (O')I in2LMJ (Q,)(W +k)

_________ 1+ 1+ ~ + ca

(IV. 2)

where

f f+ + f' + f (IV.3)
C C1  C2 C3 C CR

It can be shown that f ~0, when R * . Calculating f when T 0 gives
CR CT

~. [ (k ik2L M1 +(k)
1 fw [ Li+ ~ 1+k (IV.'.)
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Cr

rit.. 3

Contour for integration of the integral'

I in (IV. 1)
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For f + I , taking note of the fact that k' has the + sign
C C3

on the right-hand side and the.- sign on the left-hand side of the cut,

respectively, we get

1 1HIf+(l I ~~c" + k[f+ J[ dc . (IV.5)
2D C3) I+( Vc- ? (c +at)

L'/ 2 1+ -

Rek+ii

To calculate the integral in the r-h-s, of (IV.5) for large guide width, i.e.,

k2L>,> we note that the integrand decreases exponentially along the path of

integration from k to k + i-. This allows us to expand

.D "1

in a Taylor's series and retain only the first term for asymptotic evaluation.

"This gives the r-h-s, of (IV.5) - I

H S1+(k) k ic2L. dW S l+l(k) T•k f (;+a O,

SLDl+(.k) IRek+i (

Introducing a new variable u

C21, iu + 2kL , dCe •duS€2L

wo obLain

I - -M L ( +(k)/2k r2/ 4 e ik2L W 12L(a + k) (IV.6)
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where

U [-i2l.(, + k)W - e du . (IV.7)
0 J "uju 12L(a + k)]

From (IV.2) through (17.6) we get

[sI :(k)] ik2LM (k)

J.+ a-~ itIAN12 (a + k) W [-12L(a +k

Cin 2L

Si I

* L1+(a

Note that in (IV.8) we have neglected the exponentially decreasing terms

in the sumrnation.

In the same mann~er we can show:

1 ik2L2+(

e-e 1121 W(-2L(a +k)]e M2 +(k) [S:

ni L2 ,S(a.-,2  n-1/2 M -

+ +n / 2,--/ n12 IA

4 377
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APPENDIX V

In this appendix we discuss the problem of deriving the systems of the

equations that are satisfied by the constants Sl+ (an) D a(2), S ;(n1/2)

D)+( /. We present only the calculations for S (a') and D (Q')
+ -/ 1+ n 1+

Sbecause the same procedure can be followed to aolve for the other constants.

After substituting a - a' into (4.55), and using the exprcssion (4.63)

"together with the asymptotic form of the function W, 1[-2L(a + k)], we have

"~ s 1+(0,-) jG(l) - m . ) - 1,2.... (V.1)
n-1 L 'n a

where
t- 2L [ .a"

.- G(1+ n _ 1+(a_)+(n) [ (V.2)

G n tTj M. + C' .
n m n

(l) " +(a') 1 T1  [V1+(k) + S (-k)] + (a'+k)[V +(a')m + m '= "}'t' T, +1 m 1

+ S(-ci) (V.3)

To calculate the constants V (O)l , and -S (-C)O km we insert
1+ a-k,etm 1- .0ka

the expressions for Hl,() from (4.13) into (4.39), (4.48) and substitute

a k and a - a'. This yields certain integrals which we can calculatem

using the theory of residues. We are interested in examining two cases

a) N-even; b) N-odd. Substituting results into (V.3) we obtain the

"expressions for p( ). In the same manner we have obtained results for Case A.

-/

/
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SOURCE EXCITATION OF AN OPEN,
PARALLEL-PLATE WAVEGUIDE, NUMERICAL RESULTS

V

ABSTRACT

* In this work we investigate numerically the problem of the source excita-
tion of an open, parallel-plate waveguide. The foll *owing assumptions are made
for the source current 1) the current is oriented in the y-direction, 2) it
is located at z - 0, 3) there is no variation in the y-direction, 4) and the
current has exp (i~z) behavior along the longitudinal i-direction. We provide
graphical output for the EM-field components as functions of a longitudinal

7 propagation constant and transverse coordinates and then discuss these results.
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"" I. I•RODUCTIGN

- In the previous report Ill, we derived analytical expressions for

the source excitation of an open parallel-plate waveguide. However,

these formulas were very complicated, and it became necessary to evaluate

them numerically. The purpose of this report is to present the numerical

results. The computer program contained in Appendix A was written and

used to obtain the field distribution as a function of the longitudinal

propagation constant and the transverse coordinates. The numerical out-

puts are presented in graphical forma. The Cyber 175 at the University

of Illinois was used for all of the numerical studies.

The organizaticn of the report is as follows: Section II contains•/ 
.

"a statement of the problem and the basic formulation. Section III

"presents the real and imaginary parts and the amplitude of the component

field distribution ac functions of several parameters in graphical form

and a detailed discussion of the numetical results. Finally, Section IV

\ -~ is the concluzion.
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"]I. STATEMra OF THE PROBLEM AND BASIC FORT.LATION

In thii section the fields due to a vertical current located inside

an open, finite waveguide are investigated. The geometry of the problem

considered Is shown in Figure 1. This structure consists of two perfectly

conducting lates with separation 2H located in a homogeneous and isotropic

medium. A artesian coordinate system with its y-axis normal to the plates

i ted. Both plates are infinite in the z-direction and finite in the

x-direction!with length 2L as shown in Figure 1. All figures appear at the

end of Chapter 11. The current is oriented in the y-direction and is

defined as

.:. \ J- 6(x) exp (isz) ,()

where 8 is 'the propagation constant in the z-direction, and S(x) is the

. delta function. In [1] using the vector-potential. approach and the Wiener-

f'opf technique, we obtained a solution for the problem at hand in a general

form for any parameters with one restriction: kL must be much greater

than 1, i.e.,

kLL >> 1 , (2)

where

k - /2)u a, ()

and e, u are the homogeneous media parameters. Using the solution which

was obtained in [11, we will perform a numerical ;alculation for the case:

W - 0.16670 (4)
L

L()
A0

where

0

382
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22I

A'J

_ _ _ 3

$_ _ __
S-L SORC L

• :" ' Figure 1. Geometry off the problem of source excitation of• a

S\\ , parallel-plate waveguide.
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As the free-space wave length. Because of the limitaýtons of Equations

(2). (3), and (5) we calculated numeri:al results for

0 < < 0.93 , (7)

where B is the normalized propagation constant 8 - - . It can ,e

readily proved from Equations (3), (4), ard (5) that if B is in the region

7'/ [(O' 0.931, where

B0 - 0.80008997 , (8)

then only the first mode caa propagate in the x-direction; therefore, the

electromagnetic field has only three components CE , H, R 1. When S
-1

intersects the point S0 and goes to zero, the second mode begins to
1

propagate, and the LEM-field consists of five components [E x , E y Ez, Hx, R z).

tawritin, the field solution from [1l for the case,when no more than two

modes can propagate, we arrive at the EM field:

E'(xy,z) E(x,.v) exp (iBz) (9)

i '(x.,y,) (x.,y) • exp (iSz) (10)

E (x,y) - xE + yE + zE

! ,' I(x,y) "xH + zH (12)

E*.* F sinfy 1ý.! (13)y e 2

""Ey N 0 1 coos (a + (1 - 1 F2 cos Cos e -- 17 L

-. -ia ' L• . (14)

2E i F sin T cos e * :5

/, .z., 2, H L
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U ofa fol'f Licst

U.b ..
ex :ij!E (16)

2" eetp ialal '

E = I sin" I "I + i0¥2 coslTY' sin , 0 epx
(17)

whero
..(lt].+(k) 2 exp (12a) • 2bt11 4 .+()-Y _2 exp ( OL 1)" 1F +.? , (8
(1  + ( )a J

2bH 14.(k)N14 (O1) exp [ia 1+F•2 "a Q ( ' 19)

(2 a b 2-
Wl)2 (12baI) F4T b (1 * b)-,

+ . ... . .M1 . , (20)
2am ( 1 + T 1  + T

2 2-

(21)

a e .. o o a ,(2-C + in (I) +

+ _-.arc.sin =. .. (22)

2 (23)

1,

a U "/i -• (24)

b a (25)

e. H (226)
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12 bv q
Ti. [,+(k)] exp (12a) + bv p (-£ (27)

It should be mentioned that we investigated the lossless medium case;

therefore, in the region 8 < B < 0.93, the propagation corstant for

the second mode has only an imaginary part. Because we neglect terms

which decrease exponentially, our results for the above mentioned region

of B reduce to:

1) E a E* 0 0 andx a

2) more simple expressions for the other three components of the field.

We apply numerical analysis only over the regions 0 , y < H, 0 < x < L.

For the remainder of the waveguide, one can obtain results using the

correlations:

Ex(xy) - - EX (-x,y) ; Ex (xy) .- E (X,-Y)

E (x,y) - E (-x,y) ; E (x,y) E K (x,-y)

E (x,y) - E Z (-x,y) ; E (x,y) E- S(x,-y)

R (X,Y) - R (-X,y) ; R (x'y) - H (x,-y)

RZ(x,y) - - Hz(-x,y) ; Hz(X,y) Rz(x,-y) . (28)

It is interesting to note that Ex, Rz are continuous and that E, Ez, Rx

are discontinuous when B crosses B0 (or more exactly: they are expcnent±allv

decreasing). It is also of interest to determine the character of the

behavior of the x-component of Poyn•ing's vector. As one can easily see

from the previous expressions for the EM fields, the x-component of

Poynting's vector for the second mode is proportional to a, and goes to

zero whan 3 - 30' From this, one finds that the energy flow in the

x-direction is continuous when 3 intersects the point S.,
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III. n.tflERICAL STLDY OF ?ROBLEM

Because the analytical expressions derined in the second section

are rather coplicated and difficult to analyze, we numerically evaluated

the solution3 using a digital computer. The results are presented in this

section in graphical form. This section consists of two parts: in the

first we discuss the field components as fun tions of the longitudinal

propagation'constant; in the secorld - as fun tions of the transverse

coordinates

A. Re 11'and Imaginary Parts and XmplitJdes of the Field Components

As Functions of the Longitudinal Propagation.Constant

The graphicm that are supplied in this •ection were plotted with a

seep fo; S equal to 0.005. The point, a 0 80009, also was used. The

figures were plotted using 188 points. The output for the real and

imagina:y parts and the amplitudes of all five field components for eight
x

observation points: - 0.1, 0s4, 0.6, 0.9 and - 0.0, 0.5 are presented.L H

From the figtres it is observed that y, Hx,H Z are dominant components.

In Figures 6-9 the real and imaginary parts of E are given. By comparing
i Y

these results, one can observe for points 0.0 and 0.5 that the
Ey, H, H •-•ield behaviors as functions of ; are more complicated in

the middle of the waveguide. This is hardly surprising in view of the

largest contribution of the second mode for 'the above-mentioned com-

ponents for 0 - 0.0. 'alen the point of obseirvation approaches v - 0.5,
H H

the contribution of the second -ode for those components decreases and

has a limiting value equal to zero. In Figures 6-9, 14-17, 22-25 we

obserie the step changin; for the Ey, Hx colponents at 3 a 10. The
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second mode is responsible for this misbehavior. W4hen 0.5, theH

contribution of chat step decreases, and for - - 0.5, it equals zero.H *- 
•

One can observe that the curves are smooth at 3 0* It should be

mentioned that:

(a) The discontinuous behavior is obserned because we have

neglected the exponentially decreasin- terms;

(b) In a lossy medium, the rate of decrease would be less. The

H -component (see Figures 18-21, 26) doesn't have the step behavior

because the contribution of the second mode is proportional to i,,

which goes to 0, when 3 - 30. The other two components, E. and Ez, are

equal to zero on the x-axis and have their largest contribution for

S& 0.5 (see Figures 2-5, 10-13). E is smooth and E exhibits the stepH x z
behavior at 30" The figures demonstrate that the complexity of the

Scurves occurs approximately in the region 0.7 < 2 < 0.8, where we

observe a sharp peak, which is due to the resonance. In the region

0 < 8 < 0.5 the figures demonstrate the very smooth character of the

curves.

B. Real and Imaginary Parts of the Field .omonontns as Functions

of Transverse Coordinates

In this section we present the real and imaginar: parts -f the

dominant field components Ey, Hx, Hz as functions of the x-:oordinata

for two values of Z - 0.0; 0.5 and two values of i - 0.4; 0.75. The

graphic •utput, shown in Figures :3-33, was cbtained us in; the results

of calzula:ions ;or 51 points of . in the re3io-, [0.1, 0.91 (step - 0.31,
L

All the graphs have very smooth charac:eristics. For 3 a 0.73 they have

slightly more complizated forn than Er 3 * 0.. As -entioned in t:e
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previous section, for X 0.5 the contribution of the second mode equals

zero. We see that the amplitudes of the curves are constant for the

entire region of view. For the u0.0, the field components are sums of

the contributions of two modas. One can observe that the amplitudes

of the curves are changing along the x-direction.
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IV. CONCLUSIONS

In this report the problem of a source excitation of an open

parallel-plate waveguide was d,4veloped. Extensive numerical results for

the field components in the waveguide as functions of several parameters

of the waveguide and propagation constant were supplied.

,4I2
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VI. APPENDIX A

SOURCt EXCITATION OF AN OPZN, PARALLEL-PLATE WAVE•UIDE PROGRAM

A complete program for source excitation of an open, parallel-plate wave-

guide program is presented. Týe computer program provides three-

dimensional data-storage for the real and imaginary parts of five components

of the LM field. Data were obtained for 1 between 0.1 - 0.9 with step 0.1;
L

X between 0.0 - 0.9 with .tep 0.1; and 3 - propagation constant between
H

0.0 - 0.93 with step 0.005 plus (-) 0.80009. These data were used to

plot EM field components as functions of the propagation constant. The

program can be readily modified :o obtain data for plotting the VM-field

zomponent as a function of the x-coordinate.
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PROGRAM AFIEL.D( INPUTPOUTFUTPTAPE3*rTAPE1,zlN.'UT)
COMPLEX BBKPBBALpr1,F1,F2,EX0,EY0,Ez0,HXOH:0,CONSTAA.PB
DIMENSION X()Y(0tEA(FBPEO(O'P3)AEOltvS~
5REYOC 10,9, 188 AMEYO( 10p~ 9188) ,REZO( 10.9, 188) AMEZOC 10P9,laB,-
$RHXO(10,9,188),AMHXO(10,9,1SS),RHZO(10,99188),AMHZO(lO,9,1S)
READ(1,2)WYDRIYDRSThRFPXBRIXBRSXBRF

2 FORMAT(F7.5t6(F7.3))
"0tm1000
P1-3.141592654
CONST=CMPLX(0. ,1.)
CON=2. 11593152
BETAB( 1)a.
DO 70 lmlP160
BETAB( I+1)=DETAB(I)+0.005

70 CONTINUE
BETAB( 162) =0.*80009
BETAB( 163)=0.305
DO 75 1=1#25

75 BETA8(I+163)=BETAB(I+162-)+O0.005
CONTINUE
DO 98 N~ltl6l
BETA= BE T A (N)
K-N
A=10.*PI*SGRT' 1.-BETA**2)
o8l*W/PI
ALFAi.=SGRT(B**2-1 *)
DD=PI*ALFAI/U
CALL 9E1(ABoBBKsPIvMCONpALFAl)
CALL BE2(AvBvBSALrPIvMqCONrALFAl)
CALL TE1(APBPT1,DBKPPI)
CALL F12(APBTl PALFAX FBBKrBBALPFPI F2)
X=XI4RI

30 -YYBRI

"20 EXO=(PI*ALFAI/(10.*W**2) tF2*SIN(PI*Y)*SINr(r'*X)
EYO=10.*PI*(Fl*COS(A*X)+(1.-(l./(100.*W**2ý)))*F2*COS(FpI*Y)*

$COS(DD*X)-CZXP(CMF'LX(0.,A*X) )/(2.*A))
EZ0=z-CONST*ETA*(FPI/W)*F'.sSINcpr*y)*Lcs(rPr~x)
HXOin-BETA*10.*Pl*(F1*COS(A*X)+F2*CEIS(PI*)*CcS(Dri*X)-.'l.,c,.*A..t
SCEXP(CMFLX(0. ,A*X)))

8 *0.5S*CEXP(CMPLX(0. FA*X))
REXOC tJK)=REAL(ZXO)
AMEX(0( IpJvK)=AIMAG(E^'0)
REY0i IpJN)=REAL(EY0)
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Ar¶EYO I#JpK)=AIM1AGOY0)
REZOk.I ,JvK)=REALCEZ))
AMEO( I ,J#K)=AlMAG(EZ0)
RHX0( I ..IK)=F.EAL(HX0)
AM',0( .JKV=AIHAf0(HX0;
RHZ')( !JK)=REAL(HZO)
AsIHZO' ,jK)=AIM1AGHZ0)
Yzy *YB4RS

IF(Y.LZ.YE'RF) GC TO :0
=xzxXBRS

!F(X.LE.XBRF) GO TO 30
?a CONTINUE

D'O 99 L=162P188
BETA=B ETABCL )
K=L
A.at0.*FI*SCRT(l1.-BETA**2)
X=XRI
J= 1
14=A*U/F'I
CALL SE(AE4,BBPPIPM)
X=XBRI

L7 AA=CEXF'ýCMPLX(O.PA*X))

;iX03- BETA *E Y0
HiZ0=0.5*C-SIGNl(I.,X)*A+CONSTXSBBSIN(A*X))
Do ia i=1,10
REXO(IPJ#K)=0.
AMEXO(~I .JKs20.
REZO( I JK)zO.

AME'10( Ip#JK) =AIMAG(EY0)
RHX0( IPJe()zEALHXO)
AMHX0( I ,JP)=AlrMAG(HX0)

ta AMH:0(IpJtK)=AIMAG(HZO)
X=X(,ABRS
JzJ4 1
1F(X.LE.XBRF') 0O TO 17

99 CONTINUE
WRITE(3. ±01) REXOPAMEXOPREY0.AMEY(OREZ0PAtýE'E0,RHXOPAMHX0prýH:C.A4M
SHZO

101 FCOIMAT(10FS.5)

DY=0 *1

~Yy 0 )=0.
Do 50 1=1.9
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=~ 0. It,

60 CONTINUE
WR1TE(3p101) yYXXvBETAB
STOP.
END
SUBROUTINE 8E1(AvBpBB(,PIM#CONrALFAI.)
COMPLEX FPBBK
AM 1:0
DO 10 1=2rM

10 CONTINUE
F=CEXP(CMPLX(-B*PI/2-.,B*(CON-ALOG(B))-PI/2.+A+AMl))

RETURN
END
SUBROUTINE BE'2(ABBBALPIMCONALFAl)
COMPLEX FPBBALPD
AM1=0.
DO 10 I=2pM
AMI-AMI+ALFAI/I-ASIN(ALFAI/SORT(I**'ý-1.))

10 CONTINUE
F=CEXP(CMPLX(-ALFA1*PI/*. ,ALFA1*(CON-ALOO(B) )+AtV.+ALFAI*A/B))

B8ALwF*rt*SGRr(2. )*ALF~Al/B
RETURN

SUBROUTINE TEI(ApBpTlpBBKpPI)
COMPLEX TIPBBK*DI
D=B*SQRT(PI )/SORT(A*2l.)
DJIaCMPLX( I +D#-D)
TI=BBK**2*D1
RETURN
END
SUBROUTINE F12(ABT1,ALFA1 PBBt~,BBALF1 SF2)
COMPLEX r1,3BKE4BALr~lvF2,rI1

RETURN
END
SUBROUTINE BEýAPBiBBoPIPM)
COMPLEX TvFEtV
CONSTzl.11Z931516
Amts0.
DO 10 t2l,pm

1.0 CONTINUE
TzCC-XP(CMFPLX(-B*PI '2'.'*CB*(:OGNST-ALOO(B) )+.A+AMIf))
FLv50R7CPI )AB,'SQRT(2.*A)
PzCMPL.X( 1 * Fi 1 -F1)

RETURN
END

427



E 1-27 254-53

VII. APPENDIX B

ADDITIONAL NUMERICAL RESULTS

n Section III of this rgport, we have

calcula ad the'electromagneti' fields as functions of 3, the

normaliled propagation constant in the z-A 4_:zron. The para-

meters ihosen for the computation in the report were:

.0.16670, L where 2-1

At the request of Dr. D. Girn of SAI? we have now derived

additionil numerical results for the following choice of parameters,

which correspond to those of the experimental paraliel-place stru4t.,e

being investigated at Harvard.

L s 12.5 m

H a12.75- 1.020 ; 1.341667

f 25 liny (,I 12m)0

*presently with LuTech, !nc., Berkeley, CA

428
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The propagation constant in the x-direction can be written in the form:

1/2
0 kH m

w h e r e k k I a 1 0 0

kL .koL - 2• -, 6.544985.

The asymptotic analysis presented in this eport was based on the

assumption (kL>>l). Consequently, great care should be exercised when

the range of application of these formulas is extended below kL - 10.

It is not difficult to prove that in the range 0 < 3 < 0.337916,

only three modes are above cut-off in the x-direction. Furthermore,

two modes are propagating in the range 0.337916 < 8 < 0.882353 and only

one mode can propagate in the range i > 0.882353. The application of

the formulas and computer programs devaloped in this report, taough

not the theory itself, is restricted to the range where two modes can

propagate in the x-direction. For this reason, we develop the n=.er1ical

results only for the region 3 > 0.34, and specifically for the range

0.34 < 5 0.9.

Ve would like to mention that it is possible to develop the necessary

formulas and numer'.tal results for the region ,3 < < 0.34 using the

theor7 given in A previous report (1].
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